精英家教网 > 初中数学 > 题目详情
7.如图甲,点C将线段AB分成两部分(AC>BC),如果$\frac{AC}{AB}$=$\frac{BC}{AC}$,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积分别为S1,S2(S1>S2)的两部分,如果$\frac{{S}_{1}}{S}$=$\frac{{S}_{2}}{{S}_{1}}$,那么称直线l为该图形的黄金分割线.
(1)如图乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图丙,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图丁,在Rt△ABC中,∠ACB=90°,D为斜边AB上的一点,(不与A,B重合)过D作DE⊥BC于点E,连接AE,CD相交于点F,连接BF并延长,与DE,AC分别交于点G,H.请问直线BH是直角三角形ABC的黄金分割线吗?并说明理由.

分析 (1)根据条件可以证明AD=CD=BC,由△BCD∽△BCA,得到$\frac{BC}{BD}=\frac{BD}{BC}$,则有$\frac{AD}{AB}=\frac{BD}{AD}$,所以点D是AB边上的黄金分割点.
(2)只要证明△ACD:S△ABC=S△BCD:S△ACD,即可得出直线CD是△ABC的黄金分割线.
(3)只要证明AH=HC,则S△ABH=S△CBH,所以BH不是△ABC的黄金分割线.

解答 解:(1)点D是AB边上的黄金分割点.理由如下:
∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°,
∵CD是角平分线,
∴∠ACD=∠BCD=36°,
∴∠A=∠ACD,
∴AD=CD,
∵∠CDB=180°-∠B-∠BCD=72°,
∴∠CDB=∠B,
∴BC=CD,
∴BC=AD.
在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=36°,
∴△BCD∽△BAC,
∴$\frac{BC}{AB}=\frac{BD}{BC}$,
∴$\frac{AD}{AB}=\frac{BD}{AD}$,
∴点D是AB边上的黄金分割点.
(2)直线CD是△ABC的黄金分割线.理由如下:
设△ABC中,AB边上的高为h,则S△ABC=$\frac{1}{2}$ AB•h,S△ACD=$\frac{1}{2}$ AD•h,S△BCD=$\frac{1}{2}$ BD•h,
∴S△ACD:S△ABC=AD:AB,S△BCD:S△ACD=BD:AD,
由(1)知,点D是AB边上的黄金分割点,
∴$\frac{AD}{AB}=\frac{BD}{AD}$,
∴S△ACD:S△ABC=S△BCD:S△ACD
∴CD是△ABC的黄金分割线.
(3)直线BH不是△ABC的黄金分割线.理由如下:
∵DE∥AC,
∴$\frac{DG}{HC}=\frac{FG}{FH}=\frac{GE}{AH}$,$\frac{DG}{AH}=\frac{BG}{BH}=\frac{EG}{HC}$,
∴$\frac{DG}{GE}=\frac{HC}{AH}$,$\frac{DG}{GE}=\frac{AH}{HC}$,
∴$\frac{HC}{AH}=\frac{AH}{HC}$,
∴AH2=HC2
∴AH=HC,
∴S△BHA=S△BHC=$\frac{1}{2}$S△ABC
∴BH不是△ABC的黄金分割线.

点评 本题考查了相似三角形的判定与性质、含36°角的等腰三角形、黄金分割、三角形中线的性质等知识点,理解题中给出的黄金分割点、黄金分割线的概念是正确解题的基础,用比例式证明线段相等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.根据下列条件求二次函数的表达式:
(1)二次函数图象经过(0,-2),(1,2),(-1,3)三点;
(2)二次函数图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-2);
(3)二次函数图象的顶点坐标(-3,$\frac{1}{2}$),且图象过点(2,$\frac{11}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.若最简二次根式$\frac{3}{4}$$\sqrt{4{a}^{2}+1}$和2$\sqrt{6{a}^{2}-1}$是同类二次根式,则a的值是(  )
A.1B.0C.-1D.1或-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.一透明的敞口正方体容器ABCD-A′B′C′D′装有一些 液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图1所示).
如图1,液面刚好棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如 图2所示.解决问题:
(1)CQ与BE的位置关系是平行,BQ的长是3dm;
(2)求液体的体积;(参考算法:直棱柱体积V液=底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=$\frac{3}{4}$,tan37°=$\frac{3}{4}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A时,E、F两点停止运动.连结BD,过点E作EH⊥BD,垂足为H,连结EF,交BD于点G,交BC于点M,连结CF.给出下列结论:①△CDE∽△CBF;②∠DBC=∠EFC;③$\frac{DE}{AB}$=$\frac{HG}{EH}$;④GH的值为定值$\frac{{\sqrt{10}}}{5}$;⑤若GM=3EG,则tan∠FGB=$\frac{3}{4}$
上述结论中正确的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.己知抛物线y=x2+2mx-n与x轴没有交点,则m+n的取值范围是<$\frac{1}{4}$且m≠0,n≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,菱形ABCD中,AB=AC,点E,F在AB,BC上,AE=BF,AF,CE交于G,GD和AC交于H,则下列结论中成立的有(  )个.
①△ABF≌△CAE;②∠AGC=120°;③DG=AG+GC;④AD2=DH•DG;⑤△ABF≌△DAH.
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在一个不透明的口袋中装有若干个只有颜色不同的珠,如果口袋中只装有2个黄球且摸出黄球的概率为$\frac{1}{2}$,那么袋中其他颜色的球共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.

查看答案和解析>>

同步练习册答案