精英家教网 > 初中数学 > 题目详情

【题目】如图,∠ACE=AEC
1)若CE平分∠ACD,求证:ABCD
2)若ABCD,求证:CE平分∠ACD.请在(1)、(2)中选择一个进行证明.

【答案】1)详见解析;(2)详见解析.

【解析】

1)根据等量代换得到∠ACE=AEC,再根据平行线的判定,即可得出ABCD
2)根据等量代换得到∠ACE=ECD,再根据角平分线的定义,即可得出CE平分∠ACD

解:(1)∵CE平分∠ACD.(已知)
∴∠ACE=ECD.(角平线定义)
∵∠ACE=AEC.(已知)
∴∠ECD=AEC.(等量代换)
ABCD.(内错角相等,两直线平行)
2)∵ABCD.(已知)
∴∠AEC=ECD.(两直线平行,内错角相等)
∵∠ACE=AEC.(已知)
∴∠ACE=ECD.(等量代换)
CE平分∠ACD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲乙两人在相同条件下各射靶10次,甲10次射靶的成绩的情况如图所示,乙10次射靶的成绩依次是:3环、4环、5环、8环、7环、7环、8环、9环、9环、10环.

1)请在图中画出乙的射靶成绩的折线图;

(2) 请从下列两个不同角度对这次测试结果进行分析.

①从平均数和方差相结合看(分析谁的成绩稳定些);

②从平均数和中位数相结合看(分析谁的成绩好些).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y= x2 x+3 与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD∥x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.

(1)求SABD的值;
(2)如图2,若点P是直线AD下方抛物线上一动点,过点P作PF∥y轴交直线AD于点F,作PG∥AC交直线AD于点G,当△PGF的周长最大时,在线段DE上取一点Q,当PQ+ QE的值最小时,求此时PQ+ QE的值;
(3)如图3,M是BC的中点,以CM为斜边作直角△CMN,使CN∥x轴,MN∥y轴,将△CMN沿射线CB平移,记平移后的三角形为△C′M′N′,当点N′落在x轴上即停止运动,将此时的△C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x轴交于点W,请问△CST是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一幅三角板拼成如图所示的图形,过点CCF平分∠DCEDE于点F

1)求证:CF∥AB

2)求∠DFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km/h速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)

第一次

第二次

第三次

第四次

第五次

第六次

第七次

4

-5

3

-4

-3

6

-1

1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)

2)在第几次结束时距岗亭A最远?距离A多远?

3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:① 平方等于64的数是8;② ab互为相反数,ab≠0,;③ ,则的值为负数;④ ab≠0,则的取值在012,-2这四个数中,不可取的值是0.正确的个数为( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,分别以ADBC为边向内作等边ADE和等边BCF,连接BEDF.求证:四边形BEDF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,ACB=90°EAB的中点,连接CE,过点EEDBC于点D,在DE的延长线上取一点F,使AFCE,求证四边形ACEF是平行四边形.

查看答案和解析>>

同步练习册答案