精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,ABC的顶点坐标分别为A(﹣25),B(﹣43),C(﹣1,﹣1).

1)请画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标;

2)请画出ABC关于y轴对称的A2B2C2,并写出点A2的坐标;

3)在边AC上有一点Pab),直接写出以上两次图形变换后的对称点P1P2的坐标.

【答案】1A1-2-5);(2A22,5);(3P1a-b),P2-ab

【解析】

1)分别作出点ABC关于x轴对称的点,然后顺次连接,写出点A1的坐标;

2)分别作出点ABC关于y轴对称的点,然后顺次连接,写出点A2的坐标;

3)根据图形可得,点P1的坐标为(a-b),P2的坐标为(-ab).

解:(1A1-2-5);如图所示

2A225);如图所示

3P1a-b),P2-ab

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线经过点和点

求该抛物线所对应的函数解析式;

该抛物线与直线相交于CD两点,点P是抛物线上的动点且位于x轴下方,直线轴,分别与x轴和直线CD交于点MN

连结PCPD,如图1,在点P运动过程中,的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;

连结PB,过点C,垂足为点Q,如图2,是否存在点P,使得相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在三角形纸片ABC中,已知∠ABC=90AC=5BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点MN也随之移动,若限定端点MN分别在ABBC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD=110°,∠B=D=90°,在BCCD上分别找一点MN,使AMN周长最小,此时∠MAN的度数为_________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4,EBC中点,AEBC于点E,AFCD于点F,CGAE,CGAF于点H,交AD于点G.

(1)求菱形ABCD的面积;(2)求∠CHA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读并解决问题.

对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a2的形式.但对于二次三项式x2+2ax3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax3a2=x2+2ax+a2)﹣a23a2=x+a2﹣(2a2=x+3a)(xa).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为配方法

1)利用配方法分解因式:a26a+8

2)若a+b=5ab=6,求:①a2+b2;②a4+b4的值.

3)已知x是实数,当x为何值时,此多项式2x2的最小值是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积:

方法1 方法2

2)观察图②请你写出下列三个代数式:(m+n2,(mn2mn之间的等量关系.

3)根据(2)题中的等量关系,解决:已知:ab=5ab=6,求:(a+b2的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°AC=BCBECEEADCED

1)求证:△ADC≌△CEB

2AD=5cmDE=3cm,求BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到一个问题:已知:如图1,在ABC中,∠BAC=120°,ABC=40°,试过ABC的一个顶点画一条直线,将此三角形分割成两个等腰三角形.

他的做法是:如图2,首先保留最小角∠C,然后过三角形顶点A画直线交BC于点D. 将∠BAC分成两个角,使∠DAC=20°ABC即可被分割成两个等腰三角形.

喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.

他的做法是:

如图3,先画ADC ,使DA=DC,延长AD到点B,使BCD也是等腰三角形,如果DC=BC,那么∠CDB =ABC,因为∠CDB=2A,所以∠ABC= 2A.于是小明得到了一个结论:

当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.

请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).

查看答案和解析>>

同步练习册答案