精英家教网 > 初中数学 > 题目详情

【题目】如图在三角形纸片ABC中,已知∠ABC=90AC=5BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点MN也随之移动,若限定端点MN分别在ABBC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为________________

【答案】

【解析】

分别找到两个极端,MA重合时,AP取最大值,当点NC重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差

如图所示,当MA重合时,AP取最大值,此时标记为P1,由折叠的性质易得四边形AP1NB是正方形,在RtABC中,

AP的最大值为A P1=AB=3

如图所示,当点NC重合时,AP取最小,过C点作CD⊥直线l于点D,可得矩形ABCD,∴CD=AB=3AD=BC=4

由折叠的性质有PC=BC=4

RtPCD中,

AP的最小值为

线段AP长度的最大值与最小值之差为

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】同时抛掷AB两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为xy,并以此确定点P(xy),那么点P落在直线y=-2x+9上的概率为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系中的位置如图所示.

1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;

2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;

3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=(6+3m)x+(n-4).

(1)m为何值时,yx的增大而减小.

(2)mn分别为何值时,函数的图象经过原点?

(3)mn分别为何值时,函数的图象与y=3x+2平行,且与y轴的交点在x轴的下方?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

14a2b(ab-2b2-1)

2(x-2y)(y+2x)

3

42019×2017-20182(用简便方法计算)

5)先化简,再求值:,其中

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,点PAC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P),当AP旋转至APAB时,点BPP恰好在同一直线上,此时作PEAC于点E

1)求证:∠CBP=ABP

2)求证:AE=CP

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.

已知,△ABC中,ABAC,∠BACα,点DE在边BC上,且∠DAEα

1)如图1,当α60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF

求∠DAF的度数;

求证:△ADE≌△ADF

2)如图2,当α90°时,猜想BDDECE的数量关系,并说明理由;

3)如图3,当α120°,BD4CE5时,请直接写出DE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,ABC的顶点坐标分别为A(﹣25),B(﹣43),C(﹣1,﹣1).

1)请画出ABC关于x轴对称的A1B1C1,并写出点A1的坐标;

2)请画出ABC关于y轴对称的A2B2C2,并写出点A2的坐标;

3)在边AC上有一点Pab),直接写出以上两次图形变换后的对称点P1P2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,点M、N把线段AB分割成AM、MNBN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.

(1)已知点M、N是线段AB的勾股点,若AM=1,MN=2,求BN的长;

(2)如图2,点P(a,b)是反比例函数y=(x0)上的动点,直线y=﹣x+2与坐标轴分别交于A、B两点,过点P分别向x、y轴作垂线,垂足为C、D,且交线段ABE、F.证明:E、F是线段AB的勾股点;

(3)如图3,已知一次函数y=﹣x+3与坐标轴交于A、B两点,与二次函数y=x2﹣4x+m交于C、D两点,若C、D是线段AB的勾股点,求m的值.

查看答案和解析>>

同步练习册答案