【题目】如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE.
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
【答案】(1)证明见解析;(2)8.
【解析】
(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;
(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.
解:(1)∵四边形EFGH是矩形,
∴EH=FG,EH//FG,
∴∠GFH=∠EHF,
∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,
∴∠BFG=∠DHE,
∵四边形ABCD是菱形,
∴AD//BC,
∴∠GBF=∠EDH,
∴△BGF≌△DEH(AAS),
∴BG=DE.
(2)连接EG,∵四边形ABCD是菱形,
∴AD=BC,
∵E为AD中点,
∴AE=ED,
∵BG=DE,
∴AE=BG,AE//BG,
∴四边形ABGE是平行四边形,
∴AB=EG,
∵EG=FH=2,
∴AB=2,
∴菱形ABCD的周长=8.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.
(1)求抛物线的解析式;
(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;
(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+(5m2-2m+13)=0 (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】参与两个数学活动,再回答问题:
活动:观察下列两个两位数的积两个乘数的十位上的数都是9,个位上的数的和等于,猜想其中哪个积最大?
,,,,,,,,.
活动:观察下列两个三位数的积两个乘数的百位上的数都是9,十位上的数与个位上的数组成的数的和等于,猜想其中哪个积最大?
,,,,,,.
分别写出在活动、中你所猜想的是哪个算式的积最大?
对于活动,请用二次函数的知识证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线和相交于点,,在射线上取一点,使,过点作于点,是线段上的一个动点(不与点重合),过点作的垂线交射线于点.
(1)确定点的位置,在线段上任取一点,根据题意,补全图形;
(2)设cm,cm,探究函数随自变量的变化而变化的规律.
①通过取点、画图、测量,得到了与的几组对应值,如下表:
/cm | ||||||
/cm |
(要求:补全表格,相关数值保留一位小数)
②)建立平面直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
③结合画出的函数图象,解决问题:当为斜边上的中线时,的长度约为_____cm(结果保留一位小数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示A、B、C、D四点在⊙O上的位置,其中=180°,且=,=.若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确( )
A. Q点在上,且>B. Q点在上,且<
C. Q点在上,且>D. Q点在上,且<
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班数学兴趣小组经过市场调查,整理出某种商品在第天的售价与销量的相关信息如下表:
时间(天) | ||
售价(元/件) | 90 | |
每天销量(件) |
已知该商品的进价为每件30元,设销售该商品的每天利润为元
(1)求出与的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P在正方形ABCD的对角线AC上,正方形的边长是a,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N.
(1)操作发现:如图2,固定点P,使△PEF绕点P旋转,当PM⊥BC时,四边形PMCN是正方形.填空:①当AP=2PC时,四边形PMCN的边长是_________;②当AP=nPC时(n是正实数),四边形PMCN的面积是__________.
(2)猜想论证
如图3,改变四边形ABCD的形状为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF的两条直角边PE、PF分别交BC、DC于点M、N,固定点P,使△PEF绕点P旋转,则=_______.
(3)拓展探究
如图4,当四边形ABCD满足条件:∠B+∠D=180°,∠EPF=∠BAD时,点P在AC上,PE、PF分别交BC,CD于M、N点,固定P点,使△PEF绕点P旋转,请探究的值,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com