分析 根据等腰三角形的性质,直角三角形斜边上的中线性质,三角形内角和定理,等腰三角形的性质得出∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,求出∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,∠AOD=∠COE,∠COD=∠BOE,根据ASA推出△COE≌△AOD,△COD≌△BOE,根据全等三角形的性质得出S△COE=S△AOD,AD=CE,∠CDO=∠BEO,再逐个判断即可.
解答 解:∵在等腰直角△ABC中,∠ACB=90°,O是AB边上的中点,
∴∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,
∴∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,
∵∠DOE=90°,
∴∠AOD=∠COE=90°-∠COD,∠COD=∠BOE=90°-∠COE,
在△COE和△AOD中
$\left\{\begin{array}{l}{∠ECO=∠A}\\{CO=AO}\\{∠COE=∠DOA}\end{array}\right.$
∴△COE≌△AOD(ASA),
同理△COD≌△BOE,
∴S△COE=S△AOD,AD=CE,∠CDO=∠BEO,△ABC的面积是四边形DOEC面积的2倍,
在△AOC和△BOC中
$\left\{\begin{array}{l}{CO=CO}\\{AC=BC}\\{AO=BO}\end{array}\right.$
∴△AOC≌△BOC,
∵AD=CE,
∴CD+CE=AC,
∵∠COA=90°,
∴CO<AC,
∴OC=DC+CE错误;
即①②③⑤正确,④错误;
故答案为:①②③⑤.
点评 本题考查了全等三角形的性质和判定,等腰三角形的性质,直角三角形斜边上的中线性质,三角形内角和定理,等腰三角形的性质的应用,能求出△COE≌△AOD和△COD≌△BOE是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com