分析 首先构造△ACD′,D′在△ABC内部,使得AD′=CD′,∠D′AC=∠D′CA=15°,连DD′,证明△ABD≌△ACD′,得到AD=AD′,进一步证明△ADD′是等边三角形,得到DD′=AD′,再证明△ACD'≌△DCD',即可得到AC=DC.
解答 解:如图,构造△ACD′,D′在△ABC内部,使得AD′=CD′,∠D′AC=∠D′CA=15°,连DD′,![]()
∵∠ABD=∠BAD=15°,
∴∠ABD=∠BAD=∠D′AC=∠D′CA,
在△ABD和△ACD′中,
$\left\{\begin{array}{l}{∠D′AC=∠BAD}\\{AB=AC}\\{∠ACD′=∠ABD}\end{array}\right.$,
∴△ABD≌△ACD′,
∴AD=AD′,
∵∠DAD′=∠BAC-∠BAD′-∠CAD=90°-15°-15°=60°,
∴△ADD′是等边三角形,
∴DD′=AD′,
∵∠CD′A=180-∠CAD′-∠ACD′=180°-15°-15°=150°,
∴∠CDD′=360°-∠CD′A-∠AD′D=360°-150°-60°=150°,
∴∠CD′A=∠CDD′,
在△ACD′和△DCD′中,
$\left\{\begin{array}{l}{AD′=DD′}\\{∠AD′C=∠DD′C}\\{CD′=CD′}\end{array}\right.$,
∴△ACD'≌△DCD'
∴AC=DC.
点评 本题考查了全等三角形的性质定理与判定定理,解决本题的关键是构建全等三角形.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 35° | B. | 55° | C. | 60° | D. | 65° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x>0 | B. | x>1 | C. | x<-3或x>1 | D. | D-3<x<1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com