精英家教网 > 初中数学 > 题目详情

【题目】我们把的圆心角所对的弧叫做的弧.由此可知:命题圆周角的度数等于其所对的弧的度数的一半.”是真命题,已知,的度数为的度数为.

(1)如图1,⊙O的两条弦ABCD相交于圆内一点P,求证:

(2)如图2,⊙O的两条弦ABCD延长线相交于圆外一点P.问题(1)中的结论是否成立?如果成立,给予证明;如果不成立,写出一个类似的结论,并证明.

【答案】1)见解析;(2)问题(1)中的结论不成立,图2的结论为,理由见解析.

【解析】

1)连接BC,由题意可知∠B=,∠C=,再由三角形的外角性质即可得证;

2)连接BC,同理可得∠ABC=,∠C=,再由三角形的外角性质可得结论.

证明:(1)连接BC,如下图所示,

∵∠B所对的圆周角,∠C所对的圆周角,

∴∠B=,∠C=

∵∠APC是△BCP的外角,

∴∠APC=B+C=

2)问题(1)中的结论不成立,图2的结论为,理由如下:

连接BC,如下图所示,

同理可得∠ABC=,∠C=,

∵∠ABC是△BCP的外角,

∴∠ABC=APC+C

∴∠APC=ABC-C=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.

(1)若将这种水果每斤的售价降低x元,则每天的销售量是   斤(用含x的代数式表示);

(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点IABC的内心,∠AIC=124°,点EAD的延长线上,则∠CDE的度数为(  )

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (x>0)的图象与BC边交于点E.

(1)当F为AB的中点时,求该函数的解析式;

(2)当k为何值时,△EFA的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).

1)直接写出点M及抛物线顶点P的坐标;

2)求出这条抛物线的函数解析式;

3)施工队计划在隧道门口搭建一个矩形脚手架”ABCD,使AD点在抛物线上,BC点在地面OM上.为了筹备材料,需求出脚手架三根木杆ABADDC的长度之和的最大值是多少?请你帮施工队计算一下.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图像与轴交于两点,与轴交于点,其顶点为,连接,过点轴的垂线.

1)求点的坐标;

2)直线上是否存在点,使的面积等于的面积的3倍?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于钝角α,定义它的三角函数值如下:

sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)

(1)求sin120°,cos120°,sin150°的值;

(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及A和B的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车销售公司11月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出部汽车,则该部汽车的进价为万元,每多售出部,所有售出的汽车的进价均降低万元/.月底厂家再根据销售量返利给销售公司:销售量在部以内(),每部返利万元;销售量在部以上,每部返利万元.

(1)若该公司当月售出部汽车,则每部汽车的进价为 万元;

(2)若汽车的售价为万元/部,该公司计划当月盈利万元,则需售出多少部汽车? (盈利=销售利润+返利)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知:ABCD的两边ABAD的长是关于x的方程的两个实数根.

1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;

2)若AB的长为2,那么ABCD的周长是多少?

查看答案和解析>>

同步练习册答案