分析 (1)根据图形直接写出答案;
(2)根据两直线平行,内错角相等可得∠ABD=∠CAB,则∠CAB+∠BDO=∠ABD+∠BDO=90°;
(3)根据角平分线的定义可得∠CAE+∠BDE,过点E作EF∥AC,然后根据平行线的性质求出∠AED=∠CAE+∠BDE.
解答
解:(1)依题意得:A(-2,0),B(2,0),C(2,3);
(2)∵BD∥AC,
∴∠ABD=∠BAC,
∴CAB+∠BDO=∠ABD+∠BDO=90°;
(3):∵BD∥AC,
∴∠ABD=∠BAC,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠CAE+∠BDE=$\frac{1}{2}$(∠BAC+∠BDO)=$\frac{1}{2}$(∠ABD+∠BDO)=$\frac{1}{2}$×90°=45°,
过点E作EF∥AC,
则∠CAE=∠AEF,∠BDE=∠DEF,
∴∠AED=∠AEF+∠DEF=∠CAE+∠BDE=45°.
点评 本题考查了坐标与图形性质,平行线的性质,三角形的面积,熟记性质并求出点A、B、C的坐标是解题的关键,(3)作出平行线是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com