【题目】如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.
(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;
(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;
(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).
【答案】(1)∠AOD= 75°;(2)∠BOC=35°;(3).
【解析】
(1)利用角平分线的定义可得∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°,然后利用∠AOD=∠AOB+∠BOC+∠COD,可得结果;
(2)由角的加减可得∠AOM+∠DON的度数,从而求得∠BOM+∠CON,再利用∠BOC=∠MON-(∠BOM+∠CON)可得结果;
(3)由OM与ON分别为角平分线,利用角平分线的定义得到两对角相等,根据∠BOC=∠MON-∠BOM-∠CON,等量代换即可表示出∠BOC的大小.
解:(1)∵OM平分∠AOB,ON平分∠COD
∴∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°
∴∠AOD=∠AOB+∠BOC+∠COD=30°+25°+20°=75°
(2)∵∠AOD=75°,∠MON=55°,
∴∠AOM+∠DON=∠AOD-∠MON=20°,
∵∠BOM+∠CON=∠AOM+∠DON=20°,
∴∠BOC=∠MON-(∠BOM+∠CON)=55°-20°=35°,
(3)∵OM平分∠AOB,ON平分∠COD,
∴∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,
∵∠BOC=∠MON-∠BOM-∠CON
=∠MON-∠AOB-∠COD=∠MON-(∠AOB+∠COD)
=∠MON-(∠AOD-∠BOC)
=β-(α-∠BOC)
=β-α+∠BOC,
∴∠BOC=2β-α.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).
(1)直接写出点C1的坐标;
(2)在图中画出△A1B1C1;
(3)求△AOA1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将下面的解答过程补充完整:如图,点在上,点在上,,.试说明:∥.
解:∵ (已知)
( )
∴ (等量代换)
∴ ______∥_______( )
∴ ( )
∵ (已知)
∴ ( )
∴ ∥ ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,分别探究下面三个图形中∠P和∠A,∠C的关系,请你从所得三个关系中任意选出一个,说明你探究结论的正确性.
结论:(1)___________________;
(2)____________________;
(3)_____________________;
(4)选择结论____________,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),正方形ABCD和正方形CEFG有一公共点C,且B,C,E在同一直线,连接BG,DE.
(1)请你猜想BG,DE的位置关系和数量关系,并说明理由.
(2)若正方形CEFG绕点C按顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH上一点,已知∠1+∠3=180°,
(1)求证:∠CEF=∠EAD;
(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.
已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.
(1)求直线AB的解析式.
(2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com