【题目】课堂上,老师给出一道题:如图,将抛物线C:y=x2﹣6x+5在x轴下方的图象沿x轴翻折,翻折后得到的图象与抛物线C在x轴上方的图象记为G,已知直线l:y=x+m与图象G有两个公共点,求m的取值范围甲同学的结果是﹣5<m<﹣1,乙同学的结果是m>.下列说法正确的是( )
A.甲的结果正确
B.乙的结果正确
C.甲、乙的结果合在一起才正确
D.甲、乙的结果合在一起也不正确
科目:初中数学 来源: 题型:
【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线
(1)若求该抛物线与x轴的交点坐标;
(2)若,是否存在实数,使得相应的y=1,若有,请指明有几个并证明你的结论,若没有,阐述理由。
(3)若且抛物线在区间上的最小值是-3,求b的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,四边形ABCD是矩形,AB=2,BC=4,点E是线段AD上一动点(不与A,D重合),点F是线段AB延长线上一动点,连接CE,EF,EF交BC于点G,设AE=x,AF=y,已知y与x之间的函数关系如图②所示.
(1)求图②中y与x的函数表达式;
(2)求证:CE⊥CF;
(3)是否存在x的值,使得△CEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,BD为⊙O的直径,且BD=8,是圆周的,A为上任意一点,取AC=AB,交BD的延长线于C,连结OA,并作AE⊥BD于E,设AB=x,CD=y.
(1)写出y关于x的函数关系式;
(2)当x为何值时,CA是⊙O的切线?
(3)当CA与⊙O相切时,求tan∠OAE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在小正方形的边长均为1的8×8方格纸中,有线段AB和线段CD.点A、B、C、D均在小正方形的顶点上.
(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;
(2)在方格纸中画出以CD为一边的△CDF.点F在小正方形的顶点上,△CDF的面积为4,CF与(1)中画的线段AE所在直线垂直,连接EF,请直接写出线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间的距离有最大值,那么称这个最大值为图形M的“正方距”,记作.
(1)已知点,
①直接写出的值;
②直线与x轴交于点F,当取最小值时,求k的取值范围;
(2)的圆心为 ,半径为1.若,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com