【题目】Rt△ABD和Rt△ACE如下3个图摆放,其中AB=AD,AC=AE.
(1)如图1,求证:BE=CD.
(2)如图2,M为DE中点,求证:BC=2AM.
(3)如图3,AB∥CE,AE∥BC,AC=,AB=2,直接写出四边形BCED的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)5.
【解析】
(1)易证明△DAC≌△BAE,根据全等三角形对应线段相等即可得出结论;
(2)连接AM并延长至N,使MN=AM,连接DN、EN可证明四边形AEND是平行四边形,根据平行四边形的性质可证明△ABC≌△DAN,根据全等三角形的性质AN=BC,由此可得AM=AN=BC;
(3)由△ABC≌△DAN(SAS)可推出S△ABC=S△ADN=S平行四边形AEND=S△ADE,由此可得出四边形BCED的面积=△BAD的面积+3△CAE的面积.
解:(1)如图1中,
∵△ABD和△ACE是等腰直角三角形,
∴AB=AD,AE=AC,且∠DAB=∠EAC=90°,
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠BAE=∠DAC,
在△DAC和△BAE中,
∵,
∴△DAC≌△BAE(SAS),
∴CD=BE,
(2)如图2中,连接AM并延长至N,使MN=AM,连接DN、EN.
∵AM=MN,DM=ME,
∴四边形AEND是平行四边形,
∴DN=AE=AC,∠ADN+∠DAE=180°,
∵∠BAD=∠CAE=90°,
∴∠BAC+∠DAE=180°,
∴∠ADN=∠BAC,
在△ABC和△DAN中,
,
∴△ABC≌△DAN(SAS),
∴AN=BC,
∴AM=AN=BC.
(3)如图3中,
如图2中,由(2)可知:△ABC≌△DAN(SAS),
∴S△ABC=S△ADN=S平行四边形AEND=S△ADE,
∵AB∥CE,AE∥BC,
∴四边形ABCE是平行四边形,
∴BC=AE,AB=EC,∴S△ABC= S△ACE
∵AC=,AB=2,
∴S四边形BCED=S△ABC+ S△ABD +S△AEC+ S△ADE=3 S△AEC + S△ABD =.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
下列判断: ①当x>2时,M=y2;
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x= 1 .
其中正确的有
A.1个 B.2个 C. 3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO﹣ON以相同的速度运动,当点P到达点O时P、Q同时停止运动.
(1)求OC、BC的长;
(2)设△CPQ的面积为S,求S与t的函数关系式;
(3)当P在OC上Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC与△DEF中,下列六个条件中:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F,不能判断△ABC与△DEF全等的是( )
A.①②④B.①②③C.④⑥①D.②③⑥
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(1,a)在抛物线y=x2上.
(1)求A点的坐标;
(2)在x轴上是否存在点P,使得△OAP是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的:若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形。
(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示).
方法1:;
方法2:.
(2)根据(1)中的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.
(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=5,ab=4,求a-b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com