精英家教网 > 初中数学 > 题目详情

【题目】某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:

1)结合两人的对话内容,求小明原计划购买文具袋多少个?

2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?

【答案】117;(2100.

【解析】

根据题意设小明原计划购买文具袋个,则实际购买了个,则可列方程,解得x的值即可解答.

据题意设小明可购买钢笔支,则购买签字笔支,则可列不等式.,解得.即最多可以购买100支.

解:(1)设小明原计划购买文具袋个,则实际购买了个,

依题意得:

解得

答:小明原计划购买文具袋17个.

2)设小明可购买钢笔支,则购买签字笔支,

依题意得:

解得

答:明最多可购买钢笔100支.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于一个大于1的正整数n进行如下操作:

n拆分为两个正整数ab的和,并计算乘积a×b

对于正整数ab分别重复此操作,得到另外两个乘积

重复上述过程,直至不能再拆分为止(即拆分到正整数1

n6时,所有的乘积的和为_________,当n100时,所有的乘积的和为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场同时购进甲、乙两种商品共200件,其进价和售价如表,

商品名称

进价(元/件)

80

100

售价(元/件)

160

240

设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.

1)求yx的函数关系式;

2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形纸片的两直角边长分别为6.8,按如图那样折叠,使点A与点B重合,折痕为DE,求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是(

A.①②③④ B.③④ C.①③④ D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:

类别

次数

购买A商品数量(件)

购买B商品数量(件)

消费金额(元)

第一次

4

5

320

第二次

2

6

300

第三次

5

7

258

解答下列问题:

(1)第  次购买有折扣;

(2)求A、B两种商品的原价;

(3)若购买A、B两种商品的折扣数相同,求折扣数;

(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题提出):分解因式:(12x2+2xy3x3y;(2a2b2+4a4b

(问题探究):某数学“探究学习”小组对以上因式分解题目进行了如下探究:

探究1:分解因式:(12x2+2xy3x3y

该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.

解:2x2+2xy3x3y=(2x2+2xy)﹣(3x+3y)=2xx+y)﹣3x+y)=(x+y)(2x3

另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把yx提出来,剩下的是相同因式(2x3),可以继续用提公因式法分解.

解:2x2+2xy3x3y=(2x23x)+(2xy3y)=x2x3)+y2x3)=(2x3)(x+y

探究2:分解因式:(2a2b2+4a4b

该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4aaa+4),含有b的项一组即﹣b24b=﹣bb+4),但发现aa+4)与﹣bb+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.

解:a2b2+4a4b=(a2b2)+(4a4b)=(a+b)(ab)+4ab)=(ab)(4+a+b

(方法总结):对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.

分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.

(学以致用):尝试运用分组分解法解答下列问题:

1)分解因式:

2)分解因式:

(拓展提升):

3)尝试运用以上思路分解因式:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;

②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.

查看答案和解析>>

同步练习册答案