精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点E、F分别在AD、CD上,且AE=DF,连接BE、AF,相交于G.求证:AF⊥BE.

【答案】证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°, 在△ABE和△ADF中,

∴△ABE≌△ADF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠AEG=90°,
∴∠DAF+∠AEG=90°,
∴∠AGE=90°,
∴BE⊥AF.

【解析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE和△ADF全等,由此即可证明.
【考点精析】通过灵活运用正方形的性质,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解答题
(1)先化简,再求值:1﹣ + ,其中a=
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求不等式组 的解集并把解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】)如图,在正方形ABCD中,AB=4cm,动点M从A出发,以1cm/s的速度沿折线AB﹣BC运动,同时动点N从A出发,以2cm/s的速度沿折线AD﹣DC﹣CB运动,M,N第一次相遇时同时停止运动.设△AMN的面积为y,运动时间为x,则下列图象中能大致反映y与x的函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点C在AOB的一边OA上,过点C的直线DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度数;

(2)求证:CG平分OCD;

(3)当O为多少度时,CD平分OCF,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于点E.在ABC外取一点F,使FAAE,FCBC

(1)求证:BE=CF;

(2)在AB上取一点M,使BM=2DE,连接ME.试判断ME与BC是否垂直,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,∠ABC=ACBD为线段CB上一点(不与CB重合),点E为射线CA上一点,∠ADE=AED.设∠BAD=αCDE=β

1)如图(1),

①若∠BAC=42°DAE=30°,则α=  β=  

②若∠BAC=54°DAE=36°,则α=  β= 

③写出αβ的数量关系,并说明理由;

2)如图2,当E点在CA的延长线上时,其它条件不变,请直接写出αβ的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABEGx轴,BCDEHGAPy轴,点DCPHx轴上,A(12)B(12)D(30)E(3,﹣2)G(3,﹣2),把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A处,并按ABCDEFGH﹣﹣PA…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是(  )

A. (12)B. (12)C. (10)D. (10)

查看答案和解析>>

同步练习册答案