【题目】如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.
(1)判断线段AB与DE的数量关系和位置关系,并说明理由;
(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.
【答案】
(1)解:AB=DE, AB⊥DE.
如图2,
∵AD⊥CA,∴∠DAE=∠ACB=90°,
∵AE=BC,∠DAE=∠ACB,AD=AC,∴△ABC≌△DEA,∴AB=DE,
∠3=∠1,∵∠DAE=90°,∴∠1+∠2=90°,∴∠3+∠2=90°,
∴∠AFE=90°,∴AB⊥DE
(2)解:如图2,
∵S四边形ADBE= S△ADE+ S△BDE= DE·AF+ DE·BF= DE·AB = c2,
S四边形ADBE=S△ABE+S△ADB= a2+ b2,
∴ a2+ b2= c2,∴a2+b2=c2.
【解析】(1)由题目中的已知条件可直接得到△ABC≌△DEA,问题得解;(2)四边形ADBE的两种构成:S四边形ADBE= S△ADE+ S△BDE和
S四边形ADBE=S△ABE+S△ADB,可验证勾股定理。
科目:初中数学 来源: 题型:
【题目】图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是( )
A.体育场离张强家2.5千米
B.张强在体育场锻炼了15分钟
C.体育场离早餐店4千米
D.张强从早餐店回家的平均速度是 千米/小时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.
(1)求m,k,n的值;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.
(1)求A、B、P三点的坐标;
(2)求四边形PQOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.两直线平行,同旁内角相等B.两直线平行,同位角相等
C.两直线被第三条直线所截,内错角相等D.若一个角的两边分别与另一个角的两边平行,则这两个角相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点出发,在矩形边上沿着的方向匀速移动,到达点时停止移动.已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在、处拐弯时分别用时).设机器人所用时间为时,其所在位置用点表示,到对角线的距离(即垂线段的长)为个单位长度,其中与的函数图像如图②所示.
(1)求、的长;
(2)如图②,点、分别在线段、上,线段平行于横轴,、的横坐标分别为、.设机器人用了到达点处,用了到达点处(见图①).若,求、的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com