【题目】已知直线l1:y=kx过点(1,2),与直线l2:y=﹣3x+b相交于点A,若l2与x轴交于点B(2,0),与y轴交于点C.
(1)分别求出直线11,l2的解析式;
(2)求△OAC的面积.
【答案】(1)y1=2x; y2=﹣3x+6;(2).
【解析】
(1)直接把点(1,2)代入l1解析式中,求出k的值;把点B(2,0)代入直线l2,求出b的值即可;
(2)首先将直线l1,l2的解析式联立,求出交点A的坐标,再根据l2的解析式求出点C的坐标,然后根据三角形的面积公式列式求出答案.
解:(1)∵直线l1:y=kx过点(1,2),
∴k=2,
∴直线l1的解析式为y1=2x;
∵直线l2:y=﹣3x+b与x轴交于点B(2,0),
∴﹣3×2+b=0,
∴b=6,
∴直线l2的解析式为y2=﹣3x+6;
(2)由 ,解得 ,
∴点A的坐标为( , ).
∵直线l2:y=﹣3x+6与y轴交于点C,
∴C(0,6).
∴S△OAC=×6×=.
故答案为:(1)y1=2x; y2=﹣3x+6;(2).
科目:初中数学 来源: 题型:
【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.
(1)求证:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°;
①求∠OCE的度数. ②若⊙O的半径为 ,求线段CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,过点A作直线DE,且满足BD⊥DE于点D,CE⊥DE于点E,当B,C在直线DE的同侧时,
(1)求证:DE=BD+CE;
(2)如果上面条件不变,当B,C在直线DE的异侧时,如图2,问BD、DE、CE之间的数量关系如何?写出结论并证明
(3)如果上面条件不变,当B,C在直线DE的异侧时,如图3,问BD、DE、CE之间的数量关系如何?写出结论并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(-1,3),点B(-1,-4),若常数a使得一次函数y=ax+1与线段AB有交点,且使得关于x的不等式组无解,则所有满足条件的整数a的个数为( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究题.
如图,、分别为数轴上的两点,点对应的数为,点对应的数为.
()请写出与、两点距离相等的点所对应的数.
()现有一只电子蚂蚁从点出发,以单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从点出发,以单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的点相遇,你知道点对应的数是多少吗?
()若当电子蚂蚁从点出发时,以单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从点出发,以单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的点相遇,你知道点对应的数是多少吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,直线y1=﹣x+3与x轴、y轴分别交于A、B两点,直线y2=﹣2x+b经过点A,已知点C(﹣1,0),直线BC与直线y2相交于点D.
(1)请直接写出:A点坐标为 ,直线BC解析式为 ,D点坐标为 ;
(2)若线段OA在x轴上移动,且点O,A移动后的对应点为O1、A1,首尾顺次连接点O1、A1、D、B构成四边形O1A1DB,当四边形O1A1DB的周长最小时,y轴上是否存在点M,使|A1M﹣DM|有最大值,若存在,请求出此时M的坐标;若不存在请说明理由.
(3)如图3,过点D作DE∥y轴,与直线AB交于点E,若Q为线段AD上一动点,将△DEQ沿边EQ翻折得到直线AB上方的△D′EQ,是否存在点Q使得△D′EQ与△AEQ的重叠部分图形为直角三角形,若存在,请求出DQ的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4,则△EFC的周长为( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标平面内有两点A(0,2)、B(﹣2,0)、C(2,0).
(1)△ABC的形状是 等腰直角三角形;
(2)求△ABC的面积及AB的长;
(3)在y轴上找一点P,如果△PAB是等腰三角形,请直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com