精英家教网 > 初中数学 > 题目详情

【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

【答案】
(1)

解:∵四边形ABCD和四边形BPEF是正方形,

∴AB=BC,BP=BF,

∴AP=CF,

在△APE和△CFE中,

∴△APE≌△CFE,

∴EA=EC


(2)

解:①∵P为AB的中点,

∴PA=PB,又PB=PE,

∴PA=PE,

∴∠PAE=45°,又∠DAC=45°,

∴∠CAE=90°,即△ACE是直角三角形;

②∵EP平分∠AEC,EP⊥AG,

∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a

∵PE∥CF,

,即 =

解得,a= b;

作GH⊥AC于H,

∵∠CAB=45°,

∴HG= AG= ×(2 b﹣2b)=(2﹣ )b,又BG=2b﹣a=(2﹣ )b,

∴GH=GB,GH⊥AC,GB⊥BC,

∴∠HCG=∠BCG,

∵PE∥CF,

∴∠PEG=∠BCG,

∴∠AEC=∠ACB=45°.

∴a:b= :1;∴∠AEC=45°.


【解析】(1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;(2)①根据正方形的性质、等腰直角三角形的性质解答;②根据PE∥CF,得到 ,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠ABC=90°
(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母) ①作线段AC的垂直平分线l,交AC于点O;
②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;
③连接DA、DC
(2)判断四边形ABCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3
(1)求A、B两点的坐标;
(2)若tan∠PDB= ,求这个二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图. 最喜爱的传统文化项目类型频数分布表

项目类型

频数

频率

书法类

18

a

围棋类

14

0.28

喜剧类

8

0.16

国画类

b

0.20

根据以上信息完成下列问题:

(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy中,点C(3,0),函数y= (k>0,x>0)的图象经过OABC的顶点A(m,n)和边BC的中点D.

(1)求m的值;
(2)若△OAD的面积等于6,求k的值;
(3)若P为函数y═ (k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的OABC的一边交于点N,设点P的横坐标为t,当 时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)解方程: =0;
(2)解不等式:2+ ≤x,并将它的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船从点A处出发,先航行至位于点A的南偏西15°且与点A相距100km的点B处,再航行至位于点B的北偏东75°且与点B相距200km的点C处.

(1)求点C与点A的距离(精确到1km);
(2)确定点C相对于点A的方向.
(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

同步练习册答案