精英家教网 > 初中数学 > 题目详情

【题目】平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为(
A.
B.
C.
D.

【答案】C
【解析】解:由题可得,点C关于直线x=1的对称点E的坐标为(2,﹣1), 设直线AE的解析式为y=kx+b,则

解得
∴y=﹣ x﹣
将D(1,m)代入,得
m=﹣ =﹣
即点D的坐标为(1,﹣ ),
∴当△ACD的周长最小时,△ABD的面积= ×AB×|﹣ |= ×4× =
故选(C)
先根据△ACD的周长最小,求出点C关于直线x=1对称的点E的坐标,再运用待定系数法求得直线AE的解析式,并把D(1,m)代入,求得D的坐标,最后计算,△ABD的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.
(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;
(2)在△ABC中,∠A<∠B<∠C. ①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且与x轴交于另一点C.

(1)求b、c的值;
(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;
(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR
①求证:PG=RQ;
②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数.
(1)求b的值,并用含m的代数式表示c;
(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;
(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程和不等式组:
(1) + =1
(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα= ,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案