精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为

【答案】(1+ ,3)或(2,﹣3)
【解析】解:∵△ABC是等边三角形,且AB=2 , ∴AB边上的高为3,
又∵点C在二次函数图象上,
∴C的纵坐标为±3,
令y=±3代入y=x2﹣2x﹣3,
∴x=1 或0或2
∵使点C落在该函数y轴右侧的图象上,
∴x>0,
∴x=1+ 或x=2
∴C(1+ ,3)或(2,﹣3)
所以答案是:(1+ ,3)或(2,﹣3)
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.
(1)求甲、乙、丙三名学生在同一处检测视力的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3
(1)求A、B两点的坐标;
(2)若tan∠PDB= ,求这个二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.
(1)判断AB与⊙O的位置关系,并说明理由;
(2)若PF:PC=1:2,AF=5,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣ x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.
(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;
(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y= x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.

(1)求点C的坐标及二次函数的关系式;
(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;
(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ= 时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.
(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)

查看答案和解析>>

同步练习册答案