【题目】如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.
(1)如图1,求证:∠AND=∠CED;
(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;
(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)OF=.
【解析】
(1)连接BE,则∠CAB=∠CEB,∠BCD=∠DEB,由CD是∠ACB的平分线得∠ACD=∠BCD,从而,∠CAB+∠ACD=∠CEB+∠DEB;由∠CAB+∠ACD=∠AND可得结论;
(2)根据2∠BDC=90°-∠DBE得∠BDC+∠DBE=90°-∠BDC,由∠BDC=∠BAC得∠BDC+∠DBE=∠CFB,结合AB是直径可得∠CFB=∠CBN,从而可证明∠CDE=∠CED,故可得结论;
(3)过C作CM⊥BE,CK⊥DB易证△CEM≌△CDK,△CMB≌△CKB从而求出CM=6,作FH⊥BC于点H,FH交CM于点G,易证△CGH≌△FHB,得CG=BF,设FM=x,利用tan∠GFM=tan∠MCB==求得 FM=3,CF=3. 作EQ⊥DF交DF于点Q,通过△CBF∽△EDF设FQ=3k,EQ==6k,则DQ=2k,EF=3k,DE=2k得BE=5+3k,BD=BE-4=3k+1,作DP⊥BE交于点P,运用勾股定理求出k的值,连接OD,在Rt△ODF中,OF2=OD2 -DF2=50-45=5,故OF=.
(1)证明:连接BE.
∠CED=∠CEB+∠DEB
∠AND=∠CAB+∠ACD
∵CD是∠ACB的平分线
∴∠ACD=∠BCD=∠DEB
∵∠CAB=∠CEB,
∴∠CAB+∠ACD=∠CEB+∠DEB
∠CED=∠AND;
(2)∵2∠BDC=90-∠DBE
∴∠BDC+∠DBE=90°-∠BDC
∵∠BDC=∠BAC
∴∠BDC+∠DBE=∠CFB
∴90°-∠DBE=90°-∠CAB
∵AB是直径,∴∠ACB=90
∴∠CFB=∠CBN,
∠CNB=∠CBE=∠CDE
∠CNB=∠AND=∠CED
∴∠CDE=∠CED,
∴CE=CD;
(3)过C作CM⊥BE,CK⊥DB
∴∠CME=∠CKD=90°,∠CEM=∠CDK,CE=CD
∴△CEM≌△CDK,∴EM=DK,CM=CK
∴△CMB≌△CKB,∴BM=BK
∴BE-BD=2BM=4,BM=2,∴CM=6.;
作FH⊥BC于点H,FH交CM于点G
∵∠FCB=45°∴△CGH≌△FHB,∴CG=BF
设FM=x,∴CG=BF=x+2,GM=6-(x+2)=4-x
tan∠GFM=tan∠MCB==
∴x=3,FM=3,CF=3.
∵△CBF∽△EDF(可以用正切值相等)
作EQ⊥DF交DF于点Q
设FQ=3k,EQ==6k,则DQ=2k,EF=3k,DE=2k
∴BE=5+3k,BD=BE-4=3k+1
作DP⊥BE交于点P,∵∠PED=∠BCD=45°,
∴PD=PE=DE=2k,PB=BE-PE=5+k;
在Rt△PDB中,PB2+PD2=DB2,(5+k)2+(2k)2=(3k+1)2
∴k=, DF=5k=3=CF, BD=3k+1=10,;
∴OF⊥CD
连接OD,∴∠AOD=∠BOD=90°,∴OD=BD=5
在Rt△ODF中,OF2=OD2 -DF2=50-45=5,∴OF=
科目:初中数学 来源: 题型:
【题目】射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
参加社区活动次数的频数、频率分布表
活动次数x | 频数 | 频率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根据以上图表信息,解答下列问题:
(1)表中a= ,b= ;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB和∠COD都是直角,射线OE是∠AOC的平分线.
(1)把图中相等的角写出来,并说明它们相等的理由;
(2)若∠BOC=40°,直接写出∠BOD= 度,∠COE= 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是9,则DP的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知有理数a、b在数轴上的对应点如图所示.
(1)已知a=–2.3,b=0.4,计算|a+b|–|a|–|1–b|的值;
(2)已知有理数a、b,计算|a+b|–|a|–|1–b|的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-(x+k)(x-5)交x轴于点A、B(A左B右),交y轴交于点C,BD⊥AC垂足为D,BD与OC交于点E,且CE=4OE.
⑴如图1,求抛物线的解析式;
⑵如图2,点M为抛物线的顶点,MH⊥x轴,垂足为H,点P为第一象限MH右侧抛物线上一点,PN⊥x轴于点N,PA交MH于点F,FG⊥PN于点G,求tan∠GBN的值;
⑶如图3,在⑵的条件下,过点P作BG的平行线交直线BC于点S,点T为直线PS上一点,TC交抛物线于点Q,若CQ=QT,TS=,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是( )
A.△AOB的面积等于△AOD的面积B.当AC⊥BD时,它是菱形
C.当OA=OB时,它是矩形D.△AOB的周长等于△AOD的周长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)请画出平移后的△DEF;
(2)请利用格点画出△ABC的高BM;
(3)△DEF的面积为 ;
(4)若连接AD、CF,则这两条线段之间的关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有四个点A、B、C、D,点A在数轴上表示的数是-12,点D在数轴上表示的数是15, AB长2个单位长度,CD长1个单位长度.
(1)点B在数轴上表示的数是 ,点C的数轴上表示的数是 ,线段BC= .
(2)若点B以1个单位长度/秒的速度向右运动,同时点C以2个单位长度/秒的速度向左运动设运动时间为t秒,若BC长6个单位长度,求t的值;
(3)若线段AB以1个单位长度/秒的速度向左运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒.
①用含有t的式子分别表示点A、B、C、D,则A是 ,B是 ,C是 ,D是 .
②若0<t<24时,设M为AC中点,N为BD中点,试求出线段MN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com