【题目】如图,在平面直角坐标系中,点A(m,n)(m>0)在双曲线y=上.
(1)如图1,m=1,∠AOB=45°,点B正好在y=(x>0)上,求B点坐标;
(2)如图2,线段OA绕O点旋转至OC,且C点正好落在y=上,C(a,b),试求m与a的数量关系.
【答案】(1)B(,);(2)或,
【解析】
(1)作出辅助线如图,证得Rt△FAORt△DAG,求得点G的坐标为(5,3),继而求得直线OG的解析式,从而求得点B的坐标;
(2)由题意得A(m,),C(a,),OA2=OC2,计算整理得(m2-a2)(1-)=0,即可求解.
(1)∵点A(m,n)在双曲线y=上,且m=1,
∴,
∴点A的坐标为(1,4),
作AG⊥OA交直线OB于点G,作GE⊥y轴于E,作AF⊥y轴于F,作AD⊥轴交GE于点D,如图所示:
∵点A的坐标为(1,4),
∴FA=1,FO=4,
∵AG⊥OA,∠AOB=45°,
∴△AOG为等腰直角三角形,
∴AO=AG,
∵∠FAO+∠OAD=∠DAG+∠OAD=90°,
∴∠FAO=∠DAG,
∴Rt△FAORt△DAG,
∴FO= DG=4,FA=DA=1,
∵GE⊥y轴, AF⊥y轴,AD⊥轴,FA=DA=1,
∴四边形ADEF为正方形,
∴FA=DA= DE=EF=1,
∴GE=DE+DG=5,EO=FO-EF=3,
∴点G的坐标为(5,3),
设直线OG的解析式为,
把点G的坐标为(5,3)代入得:,
∴直线OG的解析式为,
解方程组,
得:(负值已舍),
∴点B的坐标为(,);
(2)根据题意:A(m,),C(a,),
∵OA2=OC2,
∴m2+=2+,
整理得:(m2-a2)(1-)=0,()()()()=0,
∵,
∴或,.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,D、E分别在边AB、AC上,下列条件中,不能确定△ADE∽△ACB的是( )
A. ∠AED=∠B B. ∠BDE+∠C=180°
C. ADBC=ACDE D. ADAB=AEAC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若抛物线与轴相交于,两点,与轴相交于点,直线经过点,.
(1)求抛物线的解析式;
(2)点是直线下方抛物线上一动点,过点作轴于点,交于点,连接.
①线段是否有最大值?如果有,求出最大值;如果没有,请说明理由;
②在点运动的过程中,是否存在点,恰好使是以为腰的等腰三角形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国北方又进入了火灾多发季节,为此,某校在全校1200名学生中随机抽取一部分人进行“安全防火,警钟长鸣”知识问卷调查活动,对问卷调查成绩按“很好”、“较好”、“一般”“较差”四类汇总分析,并绘制了如下扇形统计图和条形统计图.
(1)本次活动共抽取了多少名同学?
(2)补全条形统计图;
(3)根据以上调查结果分析,估计该校1200名学生中,对“安全防火”知识了解“较好”和“很好”的学生大约共计有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.
(1)当α=125°时,∠ABC= °;
(2)求证:AC=CE;
(3)若△ABC的外心在其内部,直接写出α的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,DE平分∠ADB,交AB于E,BF平分∠CBD,交CD于F.
(1)求证:△ADE≌△CBF;
(2)当AD与BD满足什么关系时,四边形DEBF是矩形?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com