精英家教网 > 初中数学 > 题目详情

【题目】如图,点是直线与反比例函数图象的两个交点,轴于点C,己知点D01),连接ADBDBC

1)求反比例函数和直线AB的表达式;

2)根据函数图象直接写出当时不等式的解集;

3)设△ABC和△ABD的面积分别为,求的值.

【答案】1

2

3

【解析】

1)根据已知条件,点代入可求出n,进而得到B的坐标,用待定系数法即可得到一次函数解析式;

2)根据一次函数图像在反比例函数图像上方可得出结果;

3)过点 B于点 E,分别求出,即可得到结果;

1)∵点在反比例函数的图象上,

,∴反比例函数的表达式为

代入中,得,∴

代入中,得,解得

∴直线 AB 的表达式为

2)由题可得,一次函数图像在反比例函数图像上方,取值在A于B之间,故

3)过点 B于点 E,则

设直线 ABy 轴交于点F,则 F06).

D01),∴

∵点 ABDF 的距离分别为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标是(100),点B的坐标为(80),点CD在以OA为直径的半圆M上,且四边形OCDB是平行四边形,OC长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知边长为4的菱形ABCD中,ACBCEF分别为ABAD边上的动点,满足BEAF,连接EFAC于点GCECF分别交BD与点MN,给出下列结论:①∠AFC=∠AGE;②EFBE+DF;③△ECF面积的最小值为3,④若AF2,则BMMNDN;⑤若AF1,则EF3FG;其中所有正确结论的序号是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】婷婷和她妈妈玩猜拳游戏.规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时婷婷获胜.那么,婷婷获胜的概率为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,A(02)B(m m-2),则AB+ OB的最小值是(

A.B.4C.D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=x2+(k-1)x-k与直线y=kx+1交于AB两点,点A在点B的左侧.

1)如图1,当k=1时,直接写出AB两点的坐标;

2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出ABP面积的最大值及此时点P的坐标;

3)如图2,抛物线y=x2+(k-1)x-k(k0)x轴交于点CD两点(点C在点D的左侧),是否存在实数k使得直线y=kx+1与以OC为直径的圆相切?若存在,请求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx+b(k≠0)的图象经过点A(2,-6),且与反比例函数y=-的图象交于点B(a,4)

(1)求一次函数的解析式;

(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2= 的图象相交,求使y1<y2成立的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店进了一批商品进行销售,经过一个月的试销发现:该商品的周销售利润(元)与售价(元/件)满足二次函数关系,这个月的售价、周销售量(件)、周销售利润的几组对应值如下表:

注:周销售利润=周销售量(售价-进价)

1)求关于的函数解析式;

2)求关于的函数解析式,该商品每件进价是多少元?

3)该商品打算继续销售这种商品,并希望保持1350元以上的周销售利润,售价应控制在什么范围内?

查看答案和解析>>

同步练习册答案