精英家教网 > 初中数学 > 题目详情

【题目】图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形。

1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:

方法一:

方法二: .

(2)(m+n),(mn) mn这三个代数式之间的等量关系为___

(3)应用(2)中发现的关系式解决问题:若x+y=9xy=14,求xy的值.

【答案】1(m+n)4mn,(mn);2(m+n)4mn=(mn);(3)±5.

【解析】

1)观察图形可确定:方法一,大正方形的面积为(m+n,四个小长方形的面积为4mn,中间阴影部分的面积为S=m+n-4mn

方法二,图2中阴影部分为正方形,其边长为m-n,所以其面积为(m-n

2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n-4mn=m-n

3)根据(2)的关系式代入计算即可求解.

(1)方法一:S小正方形=(m+n) 4mn.

方法二:S小正方形=(mn) .

(2)(m+n),(mn),mn这三个代数式之间的等量关系为(m+n)4mn=(mn).

(3)x+y=9xy=14

xy==±5.

故答案为:(m+n)4mn,(mn) ;(m+n)4mn=(mn)±5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“知识改变命运,科技繁荣祖国”.我市中小学每年都要举办一届科技运动会.下图为我市某校2009年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:

(1)该校参加车模、建模比赛的人数分别是 人和 人;

(2)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 °,并把条形统计图补充完整;(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑)

(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖.今年我市中小学参加航模比赛人数共有2485人,请你估算今年参加航模比赛的获奖人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:

根据统计图解答下列问题:

1)求抽样调查的生活垃圾的总吨数;

2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;

3)调查发现,在可回收物中废纸垃圾约占,每回收 1 吨废纸可再造 0.85 吨的再生纸,假设该城市每月生产的生活垃圾为10000 吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择,其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调查,购买3台甲型机器和2台乙机器共需31万元,购买一台甲型机器比购买一台乙型机器多2万元.

1)求甲、乙两种机器每台各多少万元?

2)如果工厂购买机器的预算资金不超过34万元,那么该工厂有几种购买方案?

3)在(2)的条件下,如果该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金,应选择那种方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+5的图象与反比例函数k≠0)在第一象限的图象交于A(1,n)和B两点.

(1)求反比例函数的解析式及点B坐标;

(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数k≠0)的值时,写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y2x与反比例函数y (k≠0x0)的图象交于点A(1a),点B是此反比例函数图象上任意一点(不与点A重合)BCx轴于点C.

(1)k的值;

(2)OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得CAD=30°;小丽沿岸向前走30m选取点B,并测得CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在RtABC中,AB的垂直平分线交BC于点E.若BE2B22.5°.求AEC的度数及AEAC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线EF分别平行四边形ABCDAB CD于点EF,将图形沿直线EF对折,点AD分别落在点、A'D'处,

(1) 如图1,当点A’与点C重合时,连接AF,求证:四边形AECF是菱形:

(2)若∠A=60°,AD=4 AB=8,

①如图2.当点A’与BC边的中点G重合时,求AE的长;

②如图3.当点A’落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+PA’的最小值 ;

查看答案和解析>>

同步练习册答案