【题目】如图,在小正形的边长均为1的方格纸中,线段AB,点A,B均在小正方形的顶点上.
(1)在图①中画出平行四边形ABCD,且四边形ABCD的面积为6,点C、D均在小正方形的顶点上;
(2)在图②中画出一个△ABC,点C在小正方形的顶点上,且BC=BA,请直接写出∠BCA的余弦值.
![]()
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数
(x>0)的图像经过点D,则
值为( )
![]()
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=
,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=
,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E,连接OC.
![]()
(1) 判断直线CD与⊙O的位置关系,并说明理由;
(2) 若BE=
,DE=3,求⊙O的半径及AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,设二次函数
,其中
.
(1)若函数
的图象经过点(2,6),求函数
的表达式;
(2)若一次函数
的图象与
的图象经过x轴上同一点,探究实数
,
满足的关系式;
(3)已知点
和
在函数
的图象上,若
,求
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为
的网格中,
的顶点
,
,
均在格点上,
为
边上的一点.
![]()
(Ⅰ)线段
的值为______________;
(Ⅱ)在如图所示的网格中,
是
的角平分线,在
上求一点
,使
的值最小,请用无刻度的直尺,画出
和点
,并简要说明
和点
的位置是如何找到的(不要求证明)___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com