精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,在△ ABC中,ADAE分别是 ABC的高和角平分线,若∠B=30°,∠C=50°.

(1)求∠DAE的度数.

(2)试写出 DAE与∠C-B有何关系?(不必证明)

【答案】(1)10°;(2C-B=2DAE

【解析】

(1)根据三角形内角和等于180°求出∠BAC的度数,然后根据AE是角平分线求出∠CAE的度数,在ACD中,利用直角三角形两锐角互余求出∠CAD的度数,两角相减即可求解;
(2)同(1)的思路整理即可.

(1)∵∠B=30°,C=50°,

∴∠BAC=180°-30°-50°=100°.

AE是∠BAC的平分线,

∴∠BAE=50°.

RtABD中,∠BAD=90°-B=60°,

∴∠DAE=BAD-BAE=60°-50=10°;

(2)C-B=2DAE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,推理填空:

(1)∵∠1=_______(已知),

∴AC∥ED(同位角相等,两直线平行).

(2)∵∠2=______(已知),

∴AB∥FD(内错角相等,两直线平行).

(3)∵∠2+_______=180°(已知),

∴AC∥ED(同旁内角互补,两直线平行).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AE上一动点(不与点AE重合),在AE同侧分别作等边△ABC和等边△CDEADBE交于点OADBC交于点PBECD交于点Q,连接PQ.则下列结论:①AD=BE;②PQAE;③AP=BQ;④DE=DP.其中正确的是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为创建绿色学校,绿化校园环境,我校计划分两次购进AB两种花草,第一次分别购进AB两种花草30棵和15棵,共花费675元;第二次分别购进AB两种花草12棵和5棵,共花费265(两次购进同种花草价格相同)

(1)AB两种花草每棵的价格分别是多少元?

(2)若购买AB两种花草共30棵,且B种花草的数量不高于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 3个单位/秒的速度向右运动.

(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;

(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为( )
A.(﹣9,0)
B.(﹣6,0)
C.(6,0)
D.(9,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°AD平分∠CAB,交CB于点D,过点DDEAB,于点E

1)求证:△ACD≌△AED

2)若∠B=30°CD=1,求BD的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 中, ,以 的中点 为圆心分别与 相切于 两点,则 的长为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案