【题目】如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.
【答案】
【解析】
由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.
解:如图,作CG⊥CP交DF的延长线于G.
则∠PCF+∠GCF=∠PCG=90°,
∵四边形ABCD是边长为2的正方形,
∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,
∵E、F分别为CD、BC中点,
∴DE=CE=CF=BF=1,
∴AE=DF=,
∴DP==,
∴PE=,PF=,
在△ADE和△DCF中:
∴△ADE≌△DCF(SAS),
∴∠AED=∠DFC,
∴∠CEP=∠CFG,
∵∠ECP+∠PCF=∠DCB=90°,
∴∠ECP=∠FCG,
在△ECP和△FCG中:
∴△ECP≌△FCG(ASA),
∴CP=CG,EP=FG,
∴△PCG为等腰直角三角形,
∴PG=PF+FG=PF+PE==CP,
∴CP=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,AB=4.作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE.交射线BA于点F,连接AD、AE.当以A、D、M为顶点的三角形与△AEF全等时,DE的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年,《中国诗词大会》、《朗读者》,《经典咏流传》、《国家宝藏》等文化类节目相继走红,被人们称为“清流综艺”,汇文初中文学社想了解全校学生对这四个节目的喜爱情况,随机抽取了部分学生进行调查统计,要求每名学生选出一个自己最喜爱的节目,并将调查结果给制成如下统计图(其中《中国诗词大会》,《朗读者》,《经典咏流传》,《国家宝藏》分别用A、B、C、D表示),请你解答下列问题:
(1)本次调查的学生人数是 人:
(2)请把条形统计图补充完整.
(3)在扇形统计图中,B对应的圆心角的度数是 .
(4)已知汇文初中共有5000名学生,请根据样本估计全校最喜爱《国家宝藏》的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:
①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正确的结论是( )
A.①③④ B.①②③ C.①②④ D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小蚂蚁在9×9的小方格上沿着网格线运动(每小格边长为1),一只蚂蚁在C处找到食物后,要通知A、B、D、E处的其他小蚂蚁,我们把它的行动规定:向上或向右为正,向下或向左为负。如果从C到D记为:C→D(+2,-3)(第一个数表示左、右方向,第二个数表示上、下方向),那么;
(1)C→B( ),C→E( ),D→ (-4,-3),D→ ( ,+3);
(2)若这只小蚂蚁的行走路线为C→E→D→B→A→C,请你计算小蚂蚁走过的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:
书包型号 | 进价(元/个) | 售价(元/个) |
A型 | 200 | 300 |
B型 | 100 | 150 |
购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的.
(1)该文具店有哪几种进货方案?
(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.
(1)求B、C两点的距离;
(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?
(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732, ≈1.732,60千米/小时≈16.7米/秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直角坐标系中,已知点P(-2,-1),点T(t,0)是x轴上的一个动点.
(1)求点P关于原点的对称点P′的坐标;
(2)当t取何值时,△P′TO是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.
(1)若点C为原点,则点A表示的数是 ;
(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= ;
(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.
①当点停止运动时,求点P、Q之间的距离;
②设运动时间为t(单位:秒),则t为何值时,PQ=5?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com