精英家教网 > 初中数学 > 题目详情
1.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,求∠CDE的余弦值.

分析 先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E点作EH⊥CD于H,如图,设DH=x,则CH=4-x,利用勾股定理得到52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,然后根据余弦的定义求解.

解答 解:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵△ABD绕A点逆时针旋转得△ACE,
∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
∴△ADE为等边三角形,
∴DE=AD=5,
过E点作EH⊥CD于H,如图,设DH=x,则CH=4-x,
在Rt△DHE中,EH2=52-x2
在Rt△CHE中,EH2=62-(4-x)2
∴52-x2=62-(4-x)2,解得x=$\frac{5}{8}$,
∴DH=$\frac{5}{8}$,
在Rt△EDH中,cos∠HDE=$\frac{DH}{DE}$=$\frac{\frac{5}{8}}{5}$=$\frac{1}{8}$,
即∠CDE的余弦值为$\frac{1}{8}$.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和解直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.凸四边形ABCD中,AB=3,BC=4,CD=7,则AD边的取值范围为(  )
A.2<AD<7B.2<AD<13C.0<AD<14D.1<AD<13

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知一次函数y=3x-2和y=x+4的图象分别为直线l1和l2,点A(m,n)在直线l1上,点B(m,h)在直线l2上,试比较n和h的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知抛物线y=-$\frac{1}{2}{x^2}$+bx+4上有不同的两点E(6,-k2+1)和F(-4,-k2+1).
(1)求此抛物线的解析式.
(2)如图,抛物线y=-$\frac{1}{2}{x^2}$+bx+4与x轴的正半轴和y轴分别交于点A和点B,M为AB的中点,∠PMQ=45°,MP交y 轴于点C,MQ交x轴于点D.∠PMQ在AB的左侧以M为中心旋转,设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)在(2)的条件下,当m、n为何值时,∠PMQ的边过点F.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.一次函数,y=kx+b(k、b是常数,k≠0)的图象如图所示,则不等式kx+b<0的解集是(  )
A.x>-2B.x>0C.x<-2D.x<0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,一架25米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为7米.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端沿墙垂直下滑4米至E,那么梯子的底部在水平方向也滑动了4米吗?
(3)如果梯子与地面的夹角小于30°时,梯子就会滑倒,那么在第(2)问中,梯子会滑倒吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,矩形OABC的边OA在x轴上,顶点B(4,2)在抛物线y=ax2+bx上,且抛物线交x轴于另一点D(6,0).
(1)则a=-$\frac{1}{4}$,b=$\frac{3}{2}$;
(2)已知E为BC边上一个动点(不与B、C重合),连结AE交OB于点P,过点E作y轴的平行线分别交抛物线、直线OB于F、G.
①求线段FG的最大值,此时△PFG的面积为$\frac{1}{3}$;
②若以点O为圆心,OP为半径作⊙O,试判断直线AE与⊙O的能否相切?若能请求出E点坐标,若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.花盆摆放的图案如图所示:“○”表示红色郁金香,“□”表示黄色郁金香,请你仔细观察花盆摆放的规律,可得出前n行共有$\frac{1}{2}$n(n+1)盆红色郁金香和n(n+1)黄色郁金香.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=ax2+2x-6与x轴交于点A(-6,0),B(点A在点B的左侧),与y轴交于点C,直线BD与抛物线交于点D,点D与点C关于该抛物线的对称轴对称.
(1)连接CD,求抛物线的表达式和线段CD的长度;
(2)在线段BD下方的抛物线上有一点P,过点P作PM∥x轴,PN∥y轴,分别交BD于点M,N.当△MPN的面积最大时,求点P的坐标.

查看答案和解析>>

同步练习册答案