精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在点上正方处发出一球,羽毛球飞行的高度与水平距离之间满足函数表达式.已知点与球网的水平距离为,球网的高度为

1)当时,的值.通过计算判断此球能否过网.

2)若甲发球过网后,羽毛球飞行到点的水平距离为,离地面的高度为处时,乙扣球成功,求的值.

【答案】1①h=;②此球能过网,理由见解析;(2a=.

【解析】试题(1利用a=,(01)代入解析式即可求出h的值;利用x=5代入解析式求出y,再与1.55比较大小即可判断是否过网;(2)将点(01),(7)代入解析式得到一个二元一次方程组求解即可得出a的值.

试题解析:(1)解:①∵a=P01;

∴1=+h;

∴h=;

x=5代入y=得:

y==1.625;

∵1.6251.55;

此球能过网.

2)解:把(01),(7)代入y=得:;

解得:;

∴a=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分)

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲队成绩的中位数是    分,乙队成绩的众数是    分;

2)计算乙队的平均成绩和方差;

3)已知甲队成绩的方差是1.4 2,则成绩较为整齐的是    队.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小月和小东在一起探究有关多边形内角和的问题,两人互相出题考对方,小月给小东出了这样的一个题目:一个四边形的各个内角度数之比为,求各个内角的度数.小东想了想,说:这道题目有问题

1)请你指出问题出在哪里;

2)他们经过研究后,改变题目中的一个数,使这道题没有问题,请你也尝试一下,换一个合适的数,使这道题目没有问题,并进行解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AC=BC,点D在△ABC外部,且∠ACB+ADB=180°,连接ABCD.

(1)如图1,当∠ACB=90°时,则∠ADC=______°.

(2)如图2,当∠ACB=60°时,求证:DC平分∠ADB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D是线段AB的中点,DCBC,作∠EAB=∠BDEBC,连接CE.若,设BCD的面积为S,则用S表示ACE的面积正确的是(

A.B.3S

C.4SD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,B处测得探测线与地面的夹角为60°,求该生命迹象C所在位置的深度.(结果精确到0.1,参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是几何学中的明珠,充满着魅力,千百年来,人们对它趋之若鹜,其中有著名的数学家,也有业余数学爱好者,向常春在1994年构造发现了一个新的证法:把两个全等的直角三角形如图1放置,其三边长分别为abc,显然∠DAB=∠B90°ACDE

1)请用abc分别表示出梯形ABCD、四边形AECDEBC的面积,再通过探究这三个图形面积之间的关系,证明:勾股定理a2+b2c2

2)如图2,铁路上AB两点(看作直线上的两点)相距40千米,CD为两个村庄(看作两个点),ADABBCAB,垂足分别为ABAD24千米,BC16千米,在AB上有一个供应站P,且PCPD,求出AP的距离;

3)借助(2)的思考过程与几何模型,直接写出代数式的最小值为   

查看答案和解析>>

同步练习册答案