【题目】如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的为_______________.
【答案】
【解析】
设BF和AG交于点O,根据折叠的性质可得:FA=FG,BA=BG,从而证出BF垂直平分AG,根据正方形的性质和全等三角形的判定可证出:△DAE≌△ABF,从而求出DE=AF=5,然后利用相似三角形的判定可得:△OAF∽△DAE,列出比例式即可求出AO和OG,从而求出GE.
解:设BF和AG交于点O
由折叠的性质可得:FA=FG,BA=BG
∴点F、B都在AG的中垂线上
根据两点确定一条直线
∴BF垂直平分AG
即AO=OG,∠AOB=∠AOF=90°
∴∠ABF+∠BAE=90°
∵四边形ABCD是正方形
∴AD=AB=12,∠D=∠FAB=90°
∴∠DAE+∠BAE=90°,根据勾股定理可得:AE=
∴∠DAE=∠ABF
在△DAE和△ABF中
∴△DAE≌△ABF
∴DE=AF=5
∵∠OAF=∠DAE
∴△OAF∽△DAE
∴
即:
解得:
∴
∴GE=AE-OG-OA=
故答案为:.
科目:初中数学 来源: 题型:
【题目】我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC的内心.
(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;
(2)如图2,过点I作直线交AB于点M,交AC于点N.
①若MN⊥AI,求证:MI2=BMCN;
②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,,动点P在AB边上(不含端点A,B),以PC为直径作圆.圆与BC,CA分别相交于点M,N,则线段MN长度的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课本中有一道作业题:
有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?
小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.
(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.
(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年暑假,小丽爸爸的同事送给她爸爸一张北京故宫的门票,她和哥哥两人都很想去参观,可门票只有一张.读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字为1,2,3,5的四张牌给小丽,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小利哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌上的数字相加,如果和为偶数,和小丽去;如果和为奇数,则哥哥去.
(1)请用画树状图或列表的方法求小丽去北京故宫参观的概率;
(2)哥哥设计的游戏规则公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点O是等边△ABC内的任一点,连接OA,OB,OC.
(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.
①∠DAO的度数是 ;
②用等式表示线段OA,OB,OC之间的数量关系,并证明;
(2)设∠AOB=α,∠BOC=β.
①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:
(1)若AB为1m,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小学门口有一直线马路,交警在门口设有一条宽度为4米的斑马线,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE=15°和∠FAD=30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E,D,C,B四点在平行于斑马线的同一直线上)(参考数据:tan15°=2-,≈1.732,≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保证端午节龙舟赛在我市侨港海域顺利举办,某部门工作人员乘快艇到侨港海域考察水情,以每秒11米的速度沿平行于岸边的赛道AB由西向东行驶,在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com