精英家教网 > 初中数学 > 题目详情

【题目】如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.

(1)求证:CE=CF;
(2)在图1中,如果点G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,请说明理由.

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,点E是AB上一点,且∠DCE=45°,BE=4,求DE的长.

【答案】
(1)

证明:在△CBE和△CDF中,

∴△CBE≌△CDF,

∴CE=CF;


(2)

解:EG=BE+DG成立,

∵△CBE≌△CDF,

∴CE=CF,∠BCE=∠DCF,BE=DF,

∵∠BCD=90°,∠GCE=45°,

∴∠BCE+∠DCG=45°,

∴∠DCF+∠DCG=45°,即∠FCG=45°,

∴∠FCG=∠GCE,

在△ECG和△FCG中,

∴△ECG≌△FCG,

∴GE=GF,

∴EG=BE+DG;


(3)

作CF⊥AD交AD的延长线于F,

由(2)得,DE=BE+DF,

设DE=x,

∵AB=12,BE=4,

∴AE=8,

∴DF=x﹣4,AD=12﹣(x﹣4)=16﹣x,

由勾股定理得,82+(16﹣x)2=x2

解得,x=10,

∴DE的长为10.


【解析】(1)证明△CBE≌△CDF,根据全等三角形的性质证明;(2)根据全等三角形的性质得到CE=CF,∠BCE=∠DCF,BE=DF,证明△ECG≌△FCG,根据全等三角形的性质解答;(3)根据(2)的结论和勾股定理计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:

A型

B型

价格(万元/台)

a

b

处理污水量(吨/月)

220

180

经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.
(1)求a,b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题: =3, =0.5, =6, = =0.
根据以上算式,回答:
(1) 一定等于a吗?如果不是,那么 =
(2)利用你总结的规律,计算: ①若x<2,则 =
=
(3)若a,b,c为三角形的三边长,化简: + +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:2x﹣9=5x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.

(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,试判断DG与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE⊥BC,∠ADC=65°,则∠ABC的度数为( )

A.30°
B.40°
C.50°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校买来钢笔若干枝,可以平均分给(x﹣1)名同学,也可分给(x﹣2)名同学(x为正整数).用代数式表示钢笔的数量不可能的是(  )
A.x2+3x+2
B.3x1)(x2
C.x23x+2
D.x33x2+2x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算a(1+a)﹣a(1﹣a)的结果为(
A.2a
B.2a2
C.0
D.﹣2a+2a

查看答案和解析>>

同步练习册答案