精英家教网 > 初中数学 > 题目详情

【题目】如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.

【答案】解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,
∴AO= =5cm.
则在直角△AFO中,由勾股定理得到:FO= =13cm,
∴图中半圆的面积= π×( 2= π× = (cm2).
答:图中半圆的面积是 cm2
【解析】首先,在直角△ABO中,利用勾股定理求得AO=5cm;然后在直角△AFO中,由勾股定理求得斜边FO的长度;最后根据圆形的面积公式进行解答.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是( )

A.3
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D、E、F为O的六等分点,动点P从圆心O出发,沿OE弧EFFO的路线做匀速运动,设运动的时间为t,BPD的度数为y,则下列图象中表示y与t之间函数关系最恰当的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若点Pab)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个派生函数.例如:点(2 )在函数y=的图象上,则函数y=2x2+ 称为函数y=的一个派生函数.现给出以下两个命题:

1)存在函数y=的一个派生函数,其图象的对称轴在y轴的右侧

2)函数y=的所有派生函数的图象都经过同一点,下列判断正确的是(  )

A. 命题(1)与命题(2)都是真命题

B. 命题(1)与命题(2)都是假命题

C. 命题(1)是假命题,命题(2)是真命题

D. 命题(1)是真命题,命题(2)是假命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的等边ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为( )
A.130°
B.50°
C.40°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程2x2+3x+1=0的根的情况是(
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程(x5)(2x1)=3的一般形式是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.

(1)求证:CE=CF;
(2)在图1中,如果点G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,请说明理由.

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,点E是AB上一点,且∠DCE=45°,BE=4,求DE的长.

查看答案和解析>>

同步练习册答案