精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABAC,∠B45°,AC5BC4EAB边上一点,将△BEC沿EC所在直线翻折得到△DECDCABF,当DEAC时,tanDCE的值为_____

【答案】

【解析】

CHABHEMBCM,在Rt△BHC中可求得 BHCH4,在Rt△AHC中运用勾股定理可求得AH=3,结合题意∠ACD=∠D=∠B45°,∠DCE=∠BCE,由此可证明∠ACE=AEC,根据等角对等边AE=AC,所以BE=2,在Rt△BME中,可求得BMEM,从而根据线段的和差可求得MC,在Rt△EMC中根据正切的定义得解.

解:如图,作CHABHEMBCM

∵∠B45°,BC4

BHCH4

AC5

AH3

ABAH+BH3+47

∵将△BEC沿EC所在直线翻折得到△DEC,且DEAC

∴∠ACD=∠D=∠B45°,∠DCE=∠BCE

∴∠ACE=∠ACD+DCE=∠B+BCE=∠AEC

AEAC5

BEABAE752

BMEM

BC4

MC

tanDCE

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B地,已知B地位于A地北偏东67°方向,距离A520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)

(参考数据:sin67°≈,cos67°≈,tan67°≈≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦BCOB,点D上一动点,点ECD中点,连接BD分别交OCOE于点FG

(1)求∠DGE的度数;

(2),求的值;

(3)记△CFB,△DGO的面积分别为S1S2,若k,求的值.(用含k的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)先化简,再求值:其中,a是方程x2+3x+10的根.

2)已知抛物线yax2+bx+c的对称轴为x2,且经过点(14)和(50),试求该抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)先化简,再求值:其中,a是方程x2+3x+10的根.

2)已知抛物线yax2+bx+c的对称轴为x2,且经过点(14)和(50),试求该抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,点PCD的中点,∠BCD=60°,射线APBC的延长线于点E,射线BPDE于点K,点O是线段BK的中点.

1)求证:△ADP≌△ECP

2)若BP=nPK,试求出n的值;

3)作BMAE于点M,作KNAE于点N,连结MONO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线x=﹣1的抛物线yax2+bx+ca0)与x轴相交于AB两点,其中点A的坐标为(﹣30).

1)求点B的坐标;

2)已知a1C为抛物线与y轴的交点:

若点P在抛物线上,且SPOC4SBOC,求点P的坐标;

在抛物线的对称轴上找出一点Q,使BQ+CQ的值最小,并求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A﹣40).

1)求二次函数的解析式;

2)在抛物线上存在点P,满足SAOP=8,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.

(1)求证:AB=AC;

(2)若AB=4,BC=,求CD的长.

查看答案和解析>>

同步练习册答案