精英家教网 > 初中数学 > 题目详情

【题目】在直线AB上任取一点O,过点O作射线OC,OD,使时,的度数是(

A. B. C. D.

【答案】D

【解析】

分射线OC、OD在直线AB的两侧两种情况作出图形,在同一侧时,根据平角等于180°列式计算即可得解,在两侧时,先求出∠AOD,再根据邻补角的定义列式计算即可得解.

如图,

射线OC、OD在直线AB的同一侧时,

∵∠COD=90°,

∴∠BOD=180°-90°-AOC=180°-90°-40°=50°,

射线OC、OD在直线AB的两侧时,

∵∠COD=90°,

∴∠AOD=90°-AOC=90°-40°=50°,

∴∠BOD=180°-AOD=180°-50°=130°,

综上所述,∠BOD的度数50°130°.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算下列各题

(1)

(2)(2x)2x4÷x

(3)

(4)

(5)(x﹣2)(2+x)﹣(2﹣x)(x﹣2)

(6)(6x4y2+8x3y4)÷2xy2﹣(﹣2xy)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察等式:① =1﹣ ;② = ;③ = ;④ = ,…
(1)试用字母n的等式表示出你发现的规律,并证明该等式成立;
(2)
+ + +…+ = . (直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= (a>0,a为常数)和y= 在第一象限内的图象如图所示,点M在y= 的图象上,MC⊥x轴于点C,交y= 的图象于点A;MD⊥y轴于点D,交y= 的图象于点B,当点M在y= 的图象上运动时,以下结论:①SODB=SOCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)结合图象直接写出不等式kx+b< 的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“书香包河”读书活动中,学校准备购买一批课外读物,为使课外读物满足学生们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了______________名同学;

(2)条形统计图中,m=_________,n=__________;

(3)扇形统计图中,艺术类读物所在扇形的圆心角是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于(
A.5
B.6
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0

(1)当⊙O的半径为1时.
①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.

查看答案和解析>>

同步练习册答案