【题目】在正方形ABCD中,AB=6,对角线AC和BD相交于点O,E是AB所在直线上一点(不与点B重合),将线段OE绕点E顺时针旋转90°得到EF.
(1)如图1,当点E和点A重合时,连接BF,直接写出BF的长为 ;
(2)如图2,点E在线段AB上,且AE=1,连接BF,求BF的长;
(3)若DG:AG=2:1,连接CF,H是CF的中点,是否存在点E使△GEH是以EG为直角边的直角三角形?若存在,请直接写出EB的长;若不存在,试说明理由.
【答案】(1)3;(2)2;(3)存在,5或或
【解析】
(1)先根据旋转的性质和正方形的性质得,再证明,得;
(2)如图2,作辅助线,构建全等三角形,证明,得,,计算的长,最后利用勾股定理可得结论;
(3)先根据,且,计算,,分三种情况:①当时,在的左侧时,如图3,作辅助线,构建全等三角形和直角三角形,设,在中,根据,列方程可得的值,从而得的长;②当时,如图4,同理作辅助线,设,则,证明,列比例式可得结论,其中,就是③,如图5所示,不符合题意.
解:(1)如图1,由旋转得:,,
四边形是正方形,且边长为6,
,,
,
,
,
,
故答案为:;
(2)如图2,过作于,过作于,
四边形是正方形,
,
,
和是等腰直角三角形,
,
,
,
,
,,
,
,,
,
,,
,
中,由勾股定理得:;
(3)存在是以为直角边的直角三角形;
,且,
,,
分三种情况:
①当时,在的左侧时,如图3,过作,交的延长线于,过作于,交于,过作于,过作于,过作于,
设,
同理得,
,,
是的中点,,
,
,
,
中,,
,
,
,,
当时,(如图6所示),
当时,;
②当时,如图4,过作,交的延长线于,过作于,交于,过作于,过作于,
设,则,
同理得:,,,,
,,
,,
,
,
,
,即,
,
解得:(舍或5,
即;
③如图5,当与重合时,,此种情况不符合题意;
综上,的长是5或或.
科目:初中数学 来源: 题型:
【题目】在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC=25°,则∠DCA的度数( )
A.35°B.40°C.45°D.65°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BPBQ=AB2.若点P由A运动到C,则点Q运动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置……,则正方形铁片连续旋转2020次后,点P的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为庆祝建国周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)补全条形统计图;
(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;
(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应政府提出的“绿色发展·低碳出行”号召,某社区决定购置一批共享单车,经市场调查得知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.
(1)求男式单车和女式单车的单价;
(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步提升教育教学质量,调动学生学习的兴趣,某校在七年级学生中开展了对语文、数学、英语、历史、地理这五门课程的兴趣爱好情况的调查,以便采取必要教学改革,激发学生对各学科的兴趣爱好.随机选取该年级部分学生进行调查,要求每名学生从中选出一门最感兴趣的课程(每名学生只能选一门,不能多选),以下是根据调查结果绘制的不完整统计图表:
课程代号 | |||||
课程名称 | 语文 | |数学 | 英语 | 历史 | 地理 |
最感兴趣人数 | 12 | 30 | 54 | 9 |
请你根据以上信息,解答下列问题:
(1)被调查学生的总数为______人,______,______;
(2)被调查学生中,最喜爱课程的“众数”是______;
(3)若该年级共有800名学生,请估计该年级对语文最感兴趣的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表
最受欢迎兴趣班调查问卷 | 统计表 | |||||
选项 | 兴趣班 | 请选择 | 兴趣班 | 频数 | 频率 | |
A | 绘画 | A | 0.35 | |||
B | 音乐 | B | 18 | 0.30 | ||
C | 舞蹈 | C | 15 | |||
D | 跆拳道 | D | 6 | |||
你好!请选择一个(只能选一个)你最喜欢的兴趣班,在其后空格内打“√”,谢谢你的合作. | 1 | |||||
请你根据统计表中提供的信息回答下列问题:
(1)统计表中的 , ;
(2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣的人数;
(3)王姝和李要选择参加兴趣班,若他们每人从A、B、C、D四类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com