【题目】如图,抛物线与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,连结AC,现有一宽度为1,且长与y轴平行的矩形沿x轴方向平移,交直线AC于点D和E,△ODE周长的最小值为( )
A.B.C.D.
【答案】A
【解析】
作正方形AOCM,连接OM、作MN∥AC,使得MN=DE,连接ON交AC于E,此时OD+OE的值最小.
解:如图,
当时,
解之得
x1=-3,x2=1,
∴A(-3,0),B(1,0),
∵OA=OC=3,作正方形AOCM,连接OM、作MN∥AC,使得MN=DE,连接ON交AC于E,此时OD+OE的值最小.
∵MN=DE,MN∥DE,
∴四边形MNED是平行四边形,
∴DM=EN,
∴△ODE的周长=OD+DE+EO=DM+DE+OE=NE+OE+DE=ON+DE,
∵AC⊥OM,
∴MN⊥OM,
∴∠NMO=90°,
∵MN=DE=,OM=3,
∴ON=,
∴△ODE的周长的最小值为,
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2,BF=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式。
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
(2)求每月用电量为100度时所需交的电费:
(3)第二档每用电费y(元)与用电量(度)间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电310度,交电费168元,求m的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)直接写出当x>0时,的解集.
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴的一个交点为,与轴的交点在点与点之间(包含端点),顶点的坐标为。则下列结论:①;②;③对于任意实数,总成立;④关于的方程没有实数根。其中结论正确的个数为()
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,以为项点作等腰直角三角形,使,连接,射线交于点.
图1 图2
(1)如图1,若点、、在一条直线上,
①求证:;
②若,,求的长;
(2)如图2,若,,将绕点顺时针旋转一周,在旋转过程中射线交于点,当三角形是直角三角形时,请你直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两座建筑物的水平距离BC为30m,从甲的顶部A处测得乙的顶部D处的俯角为35°测得底部C处的俯角为43°,求甲、乙两建筑物的高度AB和DC(结果取整数).
(参考数据:tan35°≈0.70,tan43°≈0.93)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x﹣8分别交x轴、y轴于点A、点B,抛物线y=ax2+bx(a≠0)经过点A,且顶点Q在直线AB上.
(1)求a,b的值.
(2)点P是第四象限内抛物线上的点,连结OP、AP、BP,设点P的横坐标为t,△OAP的面积为s1,△OBP的面积为s2,记s=s1+s2,试求s的最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com