【题目】如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An的横坐标为an,若a1=2,则a2018=_____;若要将上述操作无限次地进行下去,则a1不可能取的值是_____.
【答案】﹣; 0、﹣1
【解析】
求出a2,a3,a4,a5的值,可发现规律,继而得出a2013的值,根据题意可得A1不能在x轴上,也不能在y轴上,从而可得出a1不可能取的值.
解:当a1=2时,B1的纵坐标为,
B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,
A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,
B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,
A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,
B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,
A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,
即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,
b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,
∵=672…2,
∴a2018=a2=﹣;
点A1不能在y轴上(此时找不到B1),即x≠0,
点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,
解得:x≠﹣1;
综上可得a1不可取0、﹣1.
故答案为:﹣;0、﹣1.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的对称轴及线段AB的长;
(2)抛物线的顶点为P,若∠APB=120°,求顶点P的坐标及a的值;
(3)若在抛物线上存在一点N,使得∠ANB=90°,结合图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
(1)求m、n的值;
(2)求直线AC的解析式.
(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在边AB上,以点A为圆心,线段AD的长为半径的⊙A与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,cos∠BAG=,.求:
(1)⊙A的半径AD的长;
(2)∠EGC的余切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是所对弦上一动点,点在的延长线上,过点作交于点,连接,已知,,设,两点间的距离为,的面积为.(当点与点,重合时,的值为0.)
小亮根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小亮的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 4.47 | 7.07 | 9.00 | 8.94 | 0 |
(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当的面积为时,的长度约为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.
(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;
(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;
(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx﹣12的图象交x轴于A(﹣3,0),B(5,0)两点,与y轴交于点C.点D是抛物线上的一个动点.
(1)求抛物线的解析式;
(2)设点D的横坐标为m,并且当m≤x≤m+5时,对应的函数值y满足﹣m,求m的值;
(3)若点D在第四象限内,过点D作DE∥y轴交BC于E,DF⊥BC于F.线段EF的长度是否存在最大值?若存在,请求出这个最大值及相应点D的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com