精英家教网 > 初中数学 > 题目详情

【题目】抛物线yax2+bx+c的图象如图所示,那么一次函数ybx+b24ac与反比例函数y在同一坐标系内的图象大致是(  )

A.B.

C.D.

【答案】D

【解析】

根据二次函数开口方向,可以判断出a的正负,根据对称轴的位置和a的正负,可以判断出b的正负,再根抛物线与y轴的交点,可以判断出c的正负,然后根据a、b、c的正负去判断一次函数和二次函数在坐标系中的位置即可.

∵二次函数图象开口向上,

a0

∵对称轴为直线x=﹣0

b0

x=﹣1时,ab+c0,当x1时,ab+c0

∴(a+b+c)(ab+c)<0

∵抛物线与x轴有两个交点,

b24ac0

∴一次函数图象经过第一、二、四象限,反比例函数图象经过第二四象限.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小明站在某广场一看台C处,从眼睛D处测得广场中心F的俯角为21°,若CD=1.6米,BC=1.5米,BC平行于地面FA,台阶AB的坡度为i=34,坡长AB=10米,则看台底端A点距离广场中心F点的距离约为(参考数据:sin21°≈0.36cos21°≈0.93tan21°≈0.38)(  )

A.8.8B.9.5C.10.5D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yx2+bx+c的对称轴为直线x1,且经过点(﹣10).若关于x的一元二次方程x2+bx+ct0t为实数)在﹣1x4的范围内有实数根,则t的取值范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是⊙的直径,是⊙的弦,点延长线的一点,平分交⊙于点,过点,垂足为点

1)求证:是⊙的切线;

2)若,求⊙的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+2分别与x轴,y轴交于AB两点,与双曲线y交于EF两点,若AB2EF,则k的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图平面直角坐标系中,矩形OABC的顶点B的坐标为(42),OAOC分别落在x轴和y轴上,OB是矩形的对角线.将△OAB绕点O逆时针旋转,使点B落在y轴上,得到△ODEODCB相交于点F,反比例函数yx0)的图象经过点F,交AB于点G

1)求k的值和点G的坐标;

2)连接FG,则图中是否存在与△BFG相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;

3)在线段OA上存在这样的点P,使得△PFG是等腰三角形.请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BC=a,AC=b,AB=c,若C=90°,如图1,则有;若ABC为锐角三角形时,小明猜想:,理由如下:如图2,过点A作ADCB于点D,设CD=x.在RtADC中,,在RtADB中,

a0,x02ax0ABC为锐角三角形时

所以小明的猜想是正确的.

(1)请你猜想,当ABC为钝角三角形时, 的大小关系.

(2)温馨提示:在图3中,作BC边上的高.

(3)证明你猜想的结论是否正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F

(1)如果∠OAC=38°,求∠DCF的度数;

(2)用含n的式子表示点D的坐标;

(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:,记为,它与轴交于点;将绕点旋转,交轴于点;将绕点旋转,交轴于点,如此进行下去,直至得

1)请写出抛物线的解析式:________

2)若在第10段抛物线上,则______

查看答案和解析>>

同步练习册答案