【题目】如图,在平面直角坐标系中,过点的直线与直线相交于点,动点在线段和射线上运动.
(1)求直线的函数关系式.
(2)求的面积.
(3)是否存在点,使的面积与的面积相等?若存在求出此时点的坐标;若不存在,说明理由.
【答案】(1);(2)6;(3),,
【解析】
(1)利用待定系数法即可求得函数的解析式;
(2)先求出点B的横坐标,再利用三角形的面积公式即可求解;
(3)根据△OMC的面积与的面积相等,根据面积公式即可求得M的横坐标,用待定系数法求出直线OA的解析式,然后把M的横坐标分别代入两个解析式即可求得M的坐标.
(1)因为点C的坐标为(0,6),所以设直线AB的函数表达式为y=kx+6,
把点A的坐标为(4,2)代入得, 4k+6=2,
解得k=-1,
∴直线AB的函数表达式为y=-x+6;
(2)把y=0代入y=-x+6,得
x=6.
∴的面积
(3)设M得横坐标为x,
由题意得
,
∴,
∴x=2或x=-2.
设直线OA的解析式为y=mx,
把A(4,2)代入得
4m=2,
∴m=,
∴y=x,
把x=2代入y=x得
y=×2=1,
∴M(2,1);
把x=2代入y=-x+6得
y=-2+6=4,
∴M2(2,4);
把x=-2代入y=-x+6得
y=2+6=8;
∴M2(-2,4);
综上所述:M的坐标是:,,.
科目:初中数学 来源: 题型:
【题目】如图,点O是等边内一点将绕点C按顺时针方向旋转得,连接已知.
求证:是等边三角形;
当时,试判断的形状,并说明理由;
探究:当为多少度时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们实验的结果如下:
朝上的点数 | ||||||
出现的次数 |
请计算“点朝上”的频率和“点朝上”的频率.
一位同学说:“根据实验,一次实验中出现点朝上的概率最大”.这位同学的说法正确吗?为什么?
小明和小亮各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B,E,C,F在同一条直线上,AB=DE,∠B=∠DEF.要使△ABC≌△DEF,则需要再添加的一个条件是_______.(写出一个即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由
(2)判断此时线段PC和线段PQ的关系,并说明理由。
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:
(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;
(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边形为1个单位长度,线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.
(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.
(2)将△ABC沿直线l翻折得到△,试画出△.
(3)画出点P,使得点P到点D、A’的距离相等,且到边AB、AA’的距离相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com