【题目】有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有( )
A. 1个B. 2个C. 3个D. 4个
【答案】B
【解析】
(1)(2)根据三角形的内角和等于180°,求出三角形中最大的角的度数,然后即可判断;(3)(4)根据勾股定理逆定理列式进行计算即可得解.
(1)∵一个角等于另外两个内角之和,
∴这个角=×180°=90°,是直角三角形;
(2)三个内角之比为3:4:5,
∴最大的角=×180°=×180°<90°,是锐角三角形;
(3)设三边分别为5k,12k,13k,
则(5k)2+(12k)2=25k2+144k2=169k2=(13k)2,是直角三角形;
(4)∵52+242=25+576=601≠252,
∴三边长分别为5,24,25的三角形不是直角三角形.
综上所述,是直角三角形的有(1)(3)共2个.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以每秒3个单位长度的速度运动,动点N从点C出发,沿C→A→B-C的方向以每秒2个单位长度的速度运动.
(1)若动点M、N同时出发,经过几秒第一次相遇?
(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.在△ABC的边上是否存在一点D,使得以点A、M、N、D为顶点的四边形为平行四边形?若存在,求此时运动的时间及点D的具体位置;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列关系哪些表示函数关系?
(1)在一定的时间t内,匀速运动所走的路程s和速度v;
(2)在平静的湖面上,投入一粒石子,泛起的波纹的周长L与半径r;
(3)正方形的面积S和梯形的面积S′;
(4)圆的面积S和它的周长C.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.
(1)求证:△DOB∽△ACB;
(2)若AD平分∠CAB,求线段BD的长;
(3)当△AB′D为等腰三角形时,求线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.
(1)求线段DO的长;
(2)设运动过程中△POQ两直角边的和为y,请求出y关于x的函数解析式;
(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据调查,初中学生课桌椅不合格率达76.7%(不合格是指不能按照学生不同的身高来调节课桌椅的高度),为了解初中生的身高情况,随机抽取了某校初中部分男生、女生进行调查收集数据如下:
男生身高(单位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(单位:cm):164 161 160 161 161 162 160 162 163 162
整理数据:
160 | 161 | 162 | 163 | 164 | |
男生(人) | 1 | 2 | 1 | a | 1 |
女生(人) | 2 | b | 3 | 1 | 1 |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)现有两名身高都为163cm的男生和女生,比较这两名同学分别在男生、女生中的身高情况,并简述理由;
(3)根据相关研究发现,只有身高为161cm的初中生课桌椅是合格的,试估计全校1000名学生中,有多少名学生的课桌椅是合格的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点N.
(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;
(2)如图②,点G是CD上的一点,连接MA、MG,若MC平分∠AMG且∠AMG=36°,∠MGD+∠EAB=180°,求∠ACD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知B(0,b)(b>0)是y轴上一动点,直线l经过点A(1,0)及点B,将Rt△ABO折叠,使得点B与点O重合,折痕分别交y轴、直线AB于点E、F,连接OF.
(1)当b=2时,求直线l的函数解析式;
(2)请用含有字母b的代数式表示线段OF的长,并说明线段OF与线段AB的数量关系;
(3)如图,在(1)的条件下,设点P是线段AB上一动点(不与A、B重合),将线段OP绕点O逆时针旋转90°至OQ,连结BQ、PQ,PQ交y轴于点T,设点P的横坐标为t.
①当△OPQ的面积最小时,求T的坐标;
②若△OPB是等腰三角形,请直接写出满足条件的t的值;
③若△OQB是直角三角形,请直接写出满足条件的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们约定:体重在选定标准的%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg),收集并整理得到如下统计表:
男生序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
体重(kg) | 45 | 62 | 55 | 58 | 67 | 80 | 53 | 65 | 60 | 55 |
根据以上表格信息解决如下问题:
(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:
平均数 | 中位数 | 众数 |
(2)请你选择其中一个统计量作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com