精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠BAC=90°ADBC,垂足为D

(1)求作∠ABC的平分线,分别交ADACEF两点;(要求:尺规作图,保留作图痕迹,不写作法)

(2)证明:AE=AF

【答案】(1)见解析;(2)证明见解析.

【解析】

1)利用基本作图(作已知角的角平分线)作BF平分∠ABC即可;

(2)分析题意,首先根据角平分线的作法作出∠ABC的角平分线,并标注点EF即可;根据直角三角形的性质,可得出∠BED+EBD=90°,∠AFE+ABF=90°,进而得出∠BED=AFE 接下来根据对顶角相等,可得出∠AEF=AFE,据此可得到结论.

解:(1)如图所示,射线BF即为所求

(2)证明:∵ADBC

∴∠ADB=90°

∴∠BED+EBD=90°

∵∠BAC=90°

∴∠AFE+ABF=90°

∵∠EBD=ABF

∴∠AFE=BED

∵∠AEF=BED

∴∠AEF=AFE

AE=AF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了帮助市内一名患白血病的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是(  )

捐款数额

10

20

30

50

100

人数

2

4

5

3

1

A. 众数是100 B. 中位数是30 C. 极差是20 D. 平均数是30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学的高中部在A校区,初中部在B校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A校区的每位高中学生往返车费是6元,B校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多各有多少学生参加.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.

(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.

(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=108°EFMN分别是ABAC的垂直平分线,点ENBC上,则∠EAN等于( )

A. 72°B. 54°C. 36°D. 18°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】郴州市正在创建全国文明城市,某校拟举办创文知识抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A20件,B15件,共需380元;如果购买A15件,B10件,共需280元.

(1)A、B两种奖品每件各多少元?

(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点O,过点O作两条射线OMON,且AOMCON90°

(1)OC平分AOM,求AOD的度数.

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班对道德与法治,历史,地理三门程的选考情况进行调研,数据如下:

科目

道德与法治

历史

地理

选考人数(人)

19

13

18

其中道德与法治,历史两门课程都选了的有3人,历史,地理两门课程都选了的有4人,该班至多有多少学生(

A.41B.42C.43D.44

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C90°EBC的中点,DE平分∠ADC,∠CDE55°.如图,则∠EAB的度数为_________

查看答案和解析>>

同步练习册答案