精英家教网 > 初中数学 > 题目详情

【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C90°EBC的中点,DE平分∠ADC,∠CDE55°.如图,则∠EAB的度数为_________

【答案】35°

【解析】

过点EEFADF,根据角平分线上的点到角的两边的距离相等可得CE=EF,再根据到角的两边距离相等的点在角的平分线上可得AE是∠BAD的平分线,然后求出∠AEB,再根据直角三角形两锐角互余求解即可.

过点EEFADF

DE平分∠ADC,∴CE=EF

EBC的中点,∴CE=BE,∴BE=EF,∴AE是∠BAD的平分线,∴∠EAB=FAE

∵∠B=C=90°,∴∠CDA+DAB=180°,∴2CDE+2EAB=180°,∴∠CDE+EAB=90°,∴∠EAB=90°-∠CDE=90°-55°=35°.

故答案为:35°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=90°ADBC,垂足为D

(1)求作∠ABC的平分线,分别交ADACEF两点;(要求:尺规作图,保留作图痕迹,不写作法)

(2)证明:AE=AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.

(1)求曲柄OA和连杆AP分别有多长;

(2)求:OA⊥OP时,如图(3),OP的长是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.

(1)开通隧道前,汽车从A地到B地大约要走多少千米?

(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线ABx轴、y轴分别交于点A(30)B(04),点Dy轴的负半轴上,若将DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.

1)求直线AB的表达式;

2)求点C和点D的坐标;

3y轴的正半轴上是否存在一点P,使得SPABSOCD?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们不妨约定:对角线互相垂直的凸四边形叫做十字形”.

(1)①在平行四边形,矩形,菱形,正方形中,一定是十字形的有   

②在凸四边形ABCD中,AB=ADCB≠CD,则该四边形   十字形.(填不是”)

(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,ACBD交于点E,ADB﹣CDB=ABD﹣CBD,当6≤AC2+BD2≤7时,求OE的取值范围;

(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记十字形”ABCD的面积为S,记AOB,COD,AOD,BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;

= = 十字形”ABCD的周长为12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,表示立方米)

价目表

每月用水量

价格

不超过的部分

超出不超出的部分

超出的部分

某户居民1月份和2月份的用水量分别为,则应收水费分别是 元和

若该户居民月份用水量(其中),则应收水费多少元? (用含的式子表示,并化简)

若该户居民两个月共用水 (月份用水量超过月份),设月份用水,求该户居民两个月共交水费多少元? (用含 的式子表示,并化简)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别是等边三角形ABC的边BCAC上的点,连接ADBE交于点O,且ABD≌△BCE

1)若AB=3AE=2,则BD=

2)若∠CBE=15°,则∠AOE=

3)若∠BAD=a,猜想∠AOE的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OA的方向是北偏东15°,OB的方向是西偏北50度.

(1)若AOC=AOB,则OC的方向是

(2)OD是OB的反向延长线,OD的方向是

(3)BOD可看作是OB绕点O逆时针方向至OD,作BOD的平分线OE,OE的方向是

(4)在(1)、(2)、(3)的条件下,COE=

查看答案和解析>>

同步练习册答案