精英家教网 > 初中数学 > 题目详情

【题目】如表:方程1、方程2、方程3是按一定规律排列的一列方程.

序号

方程

方程的解

1

x2+x2﹣=0

x1=﹣2

x21

2

x2+2x8﹣=0

x1=﹣4

x22

3

x2+3x180

x1   

x2   

1)解方程3,并将它的解填在表中的空白处;

2)请写出这列方程中第10个方程,并用求根公式求其解.

3)根据表中的规律写出第n个方程和这个方程的解.

【答案】1x1=﹣6x23;(2x110x2=﹣20;(3x1=﹣2nx2n

【解析】

1)可以利用因式分解法解方程,按照前两个方程的根的书写规律,第一个根是负数,第二个是正数,填表即可;

2)仔细观察,发现规律,利用规律写出即可;

3)根据根与系数的关系可知第n次方程的解是x1=-2nx2=n,则方程就是x2+nx-2n2=0

解:(1∵x2+3x180

即(x+6)(x3)=0

∴x+60x30

∴x1=﹣6x23

故答案为:-63

2)方程规律:x2+1x1220

x2+2x2220

x2+3x3220

即第10个方程为:x2+10x10220

所以第10个方程为:x2+10x2000

解得x

x110x2=﹣20

3)由(2)得:第n个方程为:x2+nx2n20

方程的两根为:x1=﹣2nx2n

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】长为的春游队伍,以的速度向东行进,如图1和图2,当队伍排尾行进到位置时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为,当甲返回排尾后,他及队伍均停止行进.设排尾从位置开始行进的时间为,排头与的距离为

1)当时,解答:

的函数关系式(不写的取值范围);

当甲赶到排头位置时,求的值;在甲从排头返回到排尾过程中,设甲与位置的距离为,求的函数关系式(不写的取值范围)

2)设甲这次往返队伍的总时间为,求的函数关系式(不写的取值范围),并写出队伍在此过程中行进的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数.

(1)指出函数图象的开口方向是 ,对称轴是 ,顶点坐标为

(2)x 时,yx的增大而减小;

(3)怎样移动抛物线就可以得到抛物线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下图中,每个正方形点阵由大点和小点组成:

(1)7个正方形点阵中,大点和小点的总共的个数是________其中大点的个数是_________.

(2)n个图形中,大点的个数是__________(用含n的式子表示)

(3)是否存在某个图形,使得大点的个数是210?若存在,请求出n的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACABCD的对角线,在AD边上取一点F,连接BFAC于点E,并延长BFCD的延长线于点G

(1)若∠ABF=∠ACF,求证:CE2EFEG

(2)若DGDCBE=6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于AB两点,与y轴交于点C0,﹣2),点A的坐标是(20),P为抛物线上的一个动点,过点PPDx轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1

1)求抛物线的函数表达式;

2)若点P在第二象限内,且PEOD,求△PBE的面积.

3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为原点,点,点,且,把绕点逆时针旋转,得,点旋转后的对应点为.

1)点的坐标为______.

2)解答下列问题:

①设的面积为,用含的式子表示,并写出的取值范围.

②当时,求点的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC被一个平行于BC的矩形所截,AB被截成三等份.若BCa,则图中阴影部分的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米.

(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?

(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽为多少米?

查看答案和解析>>

同步练习册答案