【题目】如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论.
(3)若∠B=30°,计算S△DAC:S△ABC的值.
【答案】(1)图形见解析(2)相切;(3)1:3
【解析】
试题(1)因为AD是弦,所以圆心O即在AB上,也在AD的垂直平分线上;
(2)因为D在圆上,所以只要能证明OD⊥BC就说明BC为⊙O的切线;
(3)根据直角三角形的性质得到CD=AD,于是得到BC=CD+BD=CD+AD=3CD,根据三角形的面积公式即可得到结论.
试题解析:
(1)如图所示,
(2)相切;理由如下:
证明:连结OD,
∵OA=OD,
∴∠OAD=∠ODA
∵AD是BAC的角平分线,则∠OAD=∠DAC,
∴∠ODA=∠DAC,
∵AC⊥BC,则∠DAC+∠ADC=90°,
∴∠ODA+∠ADC=90°,即∠ODC=90°,
∴OD⊥BC,
即BC是⊙O的切线;
(3)∵在Rt△ACD中,∠CAD=30°,
∴CD=AD,
∴BC=CD+BD=CD+AD=3CD,
∴S△DAC= ,S△ABC==;
∴S△DAC:S△ABC=: =1:3.
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程.
已知:线段,及∠O .
求作:△ABC,使得线段,及∠O分别是它的两边和一角.
作法:如图,
①以点O为圆心,长为半径画弧,分别交∠O的两边于点M ,N;
②画一条射线AP,以点A为圆心,长为半径画弧,交AP于点B;
③以点B为圆心,MN长为半径画弧,与第②步中所画的弧相交于点D;
④画射线AD;
⑤以点A为圆心,长为半径画弧,交AD于点C;
⑥连接BC ,则△ABC即为所求作的三角形.
请回答:
(1)步骤③得到两条线段相等,即 = ;
(2)∠A=∠O的作图依据是 ;
(3)小红说小明的作图不全面,原因是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.
(1)求出点的坐标
(2)当时,直接写出x的取值范围.
(3)点在x轴上,当△的周长最短时,求此时点D的坐标
(4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在半径为6cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6cm;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016湖南省娄底市)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A. 不变 B. 增大 C. 减小 D. 先变大再变小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1)M为BD的中点;(2) .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com