| A. | 2$\sqrt{5}$ | B. | 5$\sqrt{5}$ | C. | $\frac{16\sqrt{5}}{5}$ | D. | 4$\sqrt{5}$ |
分析 根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC=$\frac{AC}{BC}$=$\frac{1}{2}$,然后根据圆周角定理得到∠A=∠D,则可证得△ACB∽△DCE,利用相似比得CE=$\frac{BC}{AC}$•DC=2DC,DC为直径时,DC最长,此时CE最长,然后把DC=2$\sqrt{5}$代入计算即可.
解答 解:∵AB为⊙O的直径,⊙O的半径是$\sqrt{5}$,
∴AB=2$\sqrt{5}$,∠ACB=90°,
∵tan∠ABC=$\frac{AC}{BC}$,
∴$\frac{AC}{BC}$=$\frac{1}{2}$,
∵CD⊥CE,
∴∠DCE=90°,
∴∠ACB=∠DCE
∵∠A=∠D,
∴△ACB∽△DCE,
∴$\frac{AC}{DC}$=$\frac{BC}{CE}$,
∴CE=$\frac{BC}{AC}$•DC=2DC,
当DC最大时,CE最大,即DC为⊙O的直径时,CE最大,此时CE=2×2$\sqrt{5}$=4$\sqrt{5}$.
故选D.
点评 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.解题的关键是:判断△ACB∽△DCE.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $6\sqrt{5}n+5\sqrt{5}$ | B. | $5\sqrt{5}n+\sqrt{5}$ | C. | $6\sqrt{5}n-5\sqrt{5}$ | D. | $5\sqrt{5}n-4\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com