【题目】如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求证:AB⊥BD;
(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;
(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)
【答案】(1)见解析;(2)见解析;(3)∠BHC=90°+∠α.
【解析】
(1)根据平行线的性质以及角平分线的定义,即可得到AB⊥BD;
(2)根据BG⊥AD,AD∥EF,可得∠FBG=∠AGB=90°,进而可得∠ABG=∠DBF,根据EF∥AD,即可得到∠ACB=∠CBF=2∠DBF=2∠ABG;
(3)根据平行线的性质以及角平分线的定义可得∠ABG=∠D=∠α,再根据∠HGC=90°即可得到∠BHC=∠HGC+∠ACH=90°+∠α.
解:(1)∵AD∥EF,
∴∠ABE=∠A=∠ABC,
又∵BD平分∠CBF,
∴∠CBD=∠FBD,
∴∠ABD=(∠CBE+∠CBF)=×180°=90°,
∴AB⊥BD;
(2)∵BG⊥AG,
∴∠FBG=∠AGB=90°,
∵∠ABD=90°,
∴∠ABG=∠DBF,
∵EF∥AD,
∴∠ACB=∠CBF=2∠DBF=2∠ABG;
(3)∵ AD∥EF,
∴∠D=∠DBF,
∴∠ACB=2∠DBF=2∠D,
∴∠D=∠ACB,
∵CH平分∠ACB,
∴∠ACH=∠ACB,
∴∠ACH=∠D,
∵∠ABG=∠D=α,
∴∠ACH=α,
∵BG⊥GC,
∴∠HGC=90°,
∴∠BHC=∠HGC+∠ACH=90°+∠α.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(-1,5),B(﹣1,0),C(﹣4,3).
(1)在图中画出△ABC关于y轴对称的图形△A1B1C1;(其中A1、B1、C1分别是A、B、C的对应点,不写画法.)
(2)写出点A1、B1、C1的坐标;
(3)求出△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
操作发现
如图,在平面直角坐标系中,已知线段两端点的坐标分别为,,点的坐标为,将线段沿方向平移,平移的距离为的长度.
(1)画出平移后的线段,直接写出点对应点的坐标;
(2)连接,,,已知平分,求证:;
拓展探索
(3)若点为线段上一动点(不含端点),连接,,试猜想,和之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在相邻两点距离为1的点阵纸上(左右相邻或上下相邻的两点之间的距离都是1个单位长度),三个顶点都在点阵上的三角形叫做点阵三角形,请按要求完成下列操作:
(1)将点阵△ABC水平向右平移4个单位长度,再竖直向上平移5个单位长度,画出平移后的△A1B1C1;
(2)连接AA1、BB1,则线段AA1、BB1的位置关系为 、数量关系为 .估计线段AA1的长度大约在 <AA1< 单位长度:(填写两个相邻整数);
(3)画出△ABC边AB上的高CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(4分)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )
A.转化思想
B.三角形的两边之和大于第三边
C.两点之间,线段最短
D.三角形的一个外角大于与它不相邻的任意一个内角
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机小王某天下午营运全是在南北走向的公路上进行的。如果向南记作“”,向北记作“”他这天下午行车情况如下:(单位:千米;每次行车都有乘客)
, , , ,
请回答:
()小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?
()若小王的出租车每千米耗油升,不计汽车的损耗,共耗油多少升?
()若规定每敞车的起步价是无,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收元钱,那么小王这天下午收到乘客所给车费共多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如表所示,同时,将调查结果绘制成下面两幅不完整的统计图.
分组 | A | B | C | D |
x(分钟)的范围 | 0≤x<10 | 10≤x<20 | 20≤x<30 | 30≤x<40 |
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布直方图;
(2)所抽取的七年级学生早锻炼时间的中位数落在______组内(填“A”或“B”或“C”或“D”);
(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与反比例函数(k>0)的图像交于点A与点B(a,-4).
(1)求反比例函数的表达式;
(2)若点P(m,6)是双曲线上的一点,连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,求△POC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com