【题目】如图,在相邻两点距离为1的点阵纸上(左右相邻或上下相邻的两点之间的距离都是1个单位长度),三个顶点都在点阵上的三角形叫做点阵三角形,请按要求完成下列操作:
(1)将点阵△ABC水平向右平移4个单位长度,再竖直向上平移5个单位长度,画出平移后的△A1B1C1;
(2)连接AA1、BB1,则线段AA1、BB1的位置关系为 、数量关系为 .估计线段AA1的长度大约在 <AA1< 单位长度:(填写两个相邻整数);
(3)画出△ABC边AB上的高CD.
【答案】(1)见解析;(2)线段AA1的长度大约在6<AA1<7单位长度;(3)见解析.
【解析】
(1)依据△ABC水平向右平移4个单位长度,再竖直向上平移5个单位长度,即可画出平移后的△A1B1C1;
(2)依据平移的性质,即可得到线段AA1、BB1的位置关系以及数量关系,根据勾股定理即可估计线段AA1的长度;
(3)依据点阵△ABC各顶点的位置,类比网格中画垂线的方法,即可得出△ABC边AB上的高CD.
(1)如图所示,△A1B1C1即为所求;
(2)由平移的性质知,线段AA1、BB1的位置关系为平行,数量关系为相等;
由勾股定理可得,AA1的长度为,
∴线段AA1的长度大约在6<AA1<7单位长度;
(3)如图所示,CD即为所求.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知A(a,b),且a.b满足,
(1)求A点的坐标及线段OA的长度;(2)点P为x轴正半轴上一点,且△AOP是等腰三角形,求P点的坐标;
(3)如图2,若B(1,0),C(0,-3),试确定∠ACO+∠BCO的值是否发生变化,若不变,求其值;若变化,请求出变化范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学三班同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了条形图和扇形统计图,请你根据图表信息完成下列各题:
(1)此次共调查了___________位学生.
(2)请将条形统计图补充完整.
(3)这个学校有1000名学生,估计坐公交车的人有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,完全相同的两个菱形ABCD和ECGF的顶点C重合,∠B=∠F,点E恰好在边AD上,延长ED交FG于点H.
(1)求证:∠B=∠ECB;
(2)连接BE、CH.
①试判断四边形BEHC的形状,并说理理由;
②求证:CH平分∠DCG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求证:AB⊥BD;
(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;
(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种小商品的成本价为10元/kg,市场调查发现,该产品每天的销售量w(kg)与销售价x(元/kg)有如下关系w=﹣2x+100,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式;
(2)当售价定为多少元时,每天的销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表,根据相关信息完成下列问题:
(1)统计表中的, ;
(2)扇形统计图中“C组”所对应的圆心角的度数是 ;
(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com