精英家教网 > 初中数学 > 题目详情

【题目】某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.
(1)求甲、乙两种礼品的单价各为多少元?
(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?

【答案】
(1)

解:设购买一个乙礼品需要x元,根据题意得:

=

解得:x=60,

经检验x=60是原方程的根,

∴x+40=100.

答:甲礼品100元,乙礼品60元;


(2)

解:设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,

根据题意得:100m+60(30﹣m)≤2000,

解得:m≤5.

答:最多可购买5个甲礼品.


【解析】(1)设购买一个乙礼品需要x元,根据“花费600元购买甲礼品和花费360元购买乙礼品的数量相等”列分式方程求解即可;
(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(30﹣m)个,根据题意列不等式求解即可.
【考点精析】本题主要考查了分式方程的应用的相关知识点,需要掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是ABCD的边AD的中点,连接CE交BD于点F,如果SDEF=a,那么SBCF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向ABCD内部投掷飞镖(每次均落在ABCD内,且落在ABCD内任何一点的机会均等)恰好落在阴影区域的概率为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.

(1)求抛物线的解析式;
(2)如图①,将△BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;
(3)如图②,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径, , 连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.

(1)若OA=CD=,求阴影部分的面积;
(2)求证:DE=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=x+m与抛物线x2=4y相切,且与x轴的交点为M,点N(﹣1,0).若动点P与两定点M,N所构成三角形的周长为6.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ) 设斜率为 的直线l交曲线C于A,B两点,当PN⊥MN时,证明:∠APN=∠BPN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,SBEF:SEFC=2:3.
(1)求EF的长;
(2)如果△BEF的面积为4,求△ABC的面积.

查看答案和解析>>

同步练习册答案