【题目】如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是⊙O的切线;
(3)若FG=BF,且⊙O的半径长为3,求BD和FG的长度.
【答案】(1)见解析;(2)见解析;(3),FG=3.
【解析】
(1)根据切线判定可得EB⊥BC,而AD⊥BC,从而可以确定AD∥BE,那么△BFC∽△DGC,又G是AD的中点,就可得出结论BF=EF.
(2)要证PA是⊙O的切线,就是要证明∠PAO=90°连接AO,AB,根据第1的结论和BE是⊙O的切线和直角三角形的等量代换,就可得出结论.
(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性和勾股定理,可以求出BD和FG的长度.
(1)证明:∵BC是圆O的直径,BE是圆O的切线,
∴EB⊥BC,又∵AD⊥BC,∴AD∥BE,
∴△BFC∽△DGC,△FEC∽△GAC,,
∵G是AD的中点,∴DG=AG,∴BF=EF.
(2)证明:连结AO,AB,
∵BC是圆O的直径,∴∠BAC=90°,
在Rt△BAE中,由(1)知F是斜边BE的中点,
∴AF=FB=EF,∴∠FBA=∠FAB,
又∵OA=OB,∴∠ABO=∠BAO,
∵BE是⊙O的切线,∴∠EBO=90°,
∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA是圆O的切线.
(3)解:过点F作FH⊥AD于点H,
∵BD⊥AD,FH⊥AD,∴FH∥BC,
由(2)知∠FBA=∠BAF,∴BF=AF,
由已知得BF=FG,∴AF=FG,
∴△AFG是等腰三角形,
∵FH⊥AD,∴AH=GH,
∵DG=AG,∴DG=2HG,,
∵FH∥BD,BF∥AD,∠FBD=90°,
∴四边形BDHF是矩形,BD=FH,
∵FH∥BC,∴△HFG∽△DCG,
,
∵⊙O的半径长为,
解得:,
,
在Rt△FBC中,∵CF=3FG,BF=FG,
∴CF2=BF2+BC2,
解得FG=3(负值舍去)
∴FG=3.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,
(1)求证:四边形DBCF是平行四边形
(2)若∠A=30°,BC=4,CF=6,求CD的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O与菱形其它三边的位置关系是( )
A. 相交B. 相离C. 相切D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.
(1)写出图中所有的等腰三角形;
(2)求证:∠G=2∠F.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,已知抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.其顶点为D,对称轴是直线l,且与x轴交于点H.
(1)求点A,B,C,D的坐标;
(2)若点P是该抛物线对称轴l上的﹣个动点,求△PBC周长的最小值;
(3)若点E是线段AC上的一个动点(E与A.C不重合),过点E作x轴的垂线,与抛物线交于点F,与x轴交于点G.则在点E运动的过程中,是否存在EF=2EG?若存在,求出此时点E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com