精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C90°,DEAB的垂直平分线,AD恰好平分∠BAC.若DE1,则BC的长是_____

【答案】3

【解析】

根据线段垂直平分线上的点到线段两端点的距离相等可得ADBD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.

解:∵AD平分∠BAC,且DEAB,∠C90°,

CDDE1

DEAB的垂直平分线,

ADBD

∴∠B=∠DAB

∵∠DAB=∠CAD

∴∠CAD=∠DAB=∠B

∵∠C90°,

∴∠CAD+∠DAB+∠B90°,

∴∠B30°,

BD2DE2

BCBD+CD1+23

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):

1

2

3

4

5

总成绩

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:

1)计算两班的优秀率;

2)求两班比赛数据的中位数;

3)求两班比赛数据的方差;

4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图象中,可以表示一次函数与正比例函数为常数,且)的图象的是()

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20191120-23日,首届世界大会在北京举行.某校的学生开展对于知晓情况的问卷调查,问卷调查的结果分为四类,其中类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”,并把调查结果绘制成如图所示的两个统计图表(不完整).

根据上述信息,解答下列问题:

1)这次一共调查了多少人;

2)求“类”在扇形统计图中所占圆心角的度数;

3)请将条形统计图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,,过顶点作射线.

1)当射线外部时,如图①,点在射线上,连结,已知.

①试证明是直角三角形;

②求线段的长.(用含的代数式表示)

2)当射线内部时,如图②,过点于点,连结,请写出线段的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=CBD.

(1)求证:CD是⊙O的切线.

(2)过点B作⊙O的切线交CD的延长线于点E,若OB=5,BC=18,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,点D上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.

(1)求证:AC=CE;

(2)求证:BC2﹣AC2=ABAC;

(3)已知⊙O的半径为3.

①若=,求BC的长;

②当为何值时,ABAC的值最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC=90°ADBC,垂足为D

(1)求作∠ABC的平分线,分别交ADACEF两点;(要求:尺规作图,保留作图痕迹,不写作法)

(2)证明:AE=AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC内一点,EABC外一点,且∠ABC=∠DBE,∠3=∠4

求证:(1ABD∽△CBE

2ABC∽△DBE

查看答案和解析>>

同步练习册答案