【题目】已知中,,,过顶点作射线.
(1)当射线在外部时,如图①,点在射线上,连结、,已知,,().
①试证明是直角三角形;
②求线段的长.(用含的代数式表示)
(2)当射线在内部时,如图②,过点作于点,连结,请写出线段、、的数量关系,并说明理由.
【答案】(1)①详见解析;(2)();(2),理由详见解析.
【解析】
(1)①根据勾股定理的逆定理进行判断;
②过点C作CE⊥CD交DB的延长线于点E,利用同角的余角相等证明∠3=∠4,∠1=∠E,进而证明△ACD≌△BCE,求出DE的长,再利用勾股定理求解即可.
(2)过点C作CF⊥CD交BD的延长线于点F,先证∠ACD=∠BCF,再证△ACD≌△BCF,得CD=CF,AD=BF,再利用勾股定理求解即可.
(1)①∵
又∵
∴
∴△ABD是直角三角形
②如图①,过点C作CE⊥CD交DB的延长线于点E,
∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°
∴∠3=∠4
由①知△ABD是直角三角形
∴
又∵
∴∠1=∠E
在和中,
∴△ACD≌△BCE
∴,
∴
又∵,
∴由勾股定理得
∴()
(2)AD、BD、CD的数量关系为:,
理由如下:
如图②,过点C作CF⊥CD交BD的延长线于点F,
∵∠ACD=90°+∠5,∠BCF=90°+∠5
∴∠ACD=∠BCF
∵BD⊥AD
∴∠ADB=90°
∴∠6+∠7=90°
∵∠ACB=90°
∴∠9=∠8=90°
又∵∠6=∠8
∴∠7=∠9
和中
∴△ACD≌△BCF
∴CD=CF,AD=BF
又∵∠DCF=90°
∴由勾股定理得
又DF=BF-BD=AD-BD
∴
科目:初中数学 来源: 题型:
【题目】某超市计划购进一批甲、乙两种玩具,已知件甲种玩具的进价与件乙种玩具的进价的和为元,件甲种玩具的进价与件乙种玩具的进价的和为元.
(1)求每件甲种、乙种玩具的进价分别是多少元;
(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过件,超出部分可以享受折优惠,若购进件甲种玩具需要花费元,请你写出与的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰Rt△ABC中,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点,点C在第三象限,直角边AC交x轴于点D,斜边BC交y轴于点E.
(1)若A(0,1),B(2,0),画出图形并求C点的坐标;
(2)若点D恰为AC中点时,连接DE,画出图形,判断∠ADB和∠CDE大小关系,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与轴交于点,与轴交于点,且经过点.
(1)当时;
①求一次函数的表达式;
②平分交轴于点,求点的坐标;
(2)若△为等腰三角形,求的值;
(3)若直线也经过点,且,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)加工成的正方形零件的边长是多少mm?
(2)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少?请你计算.
(3)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用一条24cm的细绳围成一个等腰三角形。
(1)如果腰长是底边的2倍,那么各边的长是多少?
(2)能围成有一边长为4cm的等腰三角形吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为( )
A. B. ﹣1 C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com